File size: 4,516 Bytes
ed76372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ccmatrix
metrics:
- bleu
model-index:
- name: t5-base-finetuned-it-to-en
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: ccmatrix
      type: ccmatrix
      config: en-it
      split: train[3000:12000]
      args: en-it
    metrics:
    - name: Bleu
      type: bleu
      value: 26.0557
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-finetuned-it-to-en

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the ccmatrix dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7418
- Bleu: 26.0557
- Gen Len: 25.6033

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| No log        | 1.0   | 282   | 2.0555          | 16.8117 | 26.9573 |
| 2.3228        | 2.0   | 564   | 1.9791          | 18.207  | 26.754  |
| 2.3228        | 3.0   | 846   | 1.9340          | 19.2206 | 26.6513 |
| 2.104         | 4.0   | 1128  | 1.8999          | 20.0802 | 26.5473 |
| 2.104         | 5.0   | 1410  | 1.8741          | 20.9222 | 26.4633 |
| 1.9952        | 6.0   | 1692  | 1.8511          | 21.3    | 26.4547 |
| 1.9952        | 7.0   | 1974  | 1.8361          | 21.9444 | 26.5227 |
| 1.9032        | 8.0   | 2256  | 1.8191          | 22.224  | 26.168  |
| 1.8342        | 9.0   | 2538  | 1.8074          | 22.7097 | 26.1573 |
| 1.8342        | 10.0  | 2820  | 1.7972          | 23.0299 | 26.2373 |
| 1.7718        | 11.0  | 3102  | 1.7898          | 23.5173 | 26.0447 |
| 1.7718        | 12.0  | 3384  | 1.7833          | 23.7157 | 26.0073 |
| 1.7268        | 13.0  | 3666  | 1.7785          | 23.8523 | 25.742  |
| 1.7268        | 14.0  | 3948  | 1.7725          | 23.979  | 25.88   |
| 1.6822        | 15.0  | 4230  | 1.7686          | 24.2126 | 25.8347 |
| 1.6386        | 16.0  | 4512  | 1.7639          | 24.4612 | 25.786  |
| 1.6386        | 17.0  | 4794  | 1.7605          | 24.6716 | 25.828  |
| 1.6047        | 18.0  | 5076  | 1.7549          | 24.9392 | 25.6493 |
| 1.6047        | 19.0  | 5358  | 1.7548          | 24.8965 | 25.6527 |
| 1.5778        | 20.0  | 5640  | 1.7537          | 24.9908 | 25.7827 |
| 1.5778        | 21.0  | 5922  | 1.7498          | 25.1397 | 25.6707 |
| 1.5413        | 22.0  | 6204  | 1.7472          | 25.2764 | 25.7373 |
| 1.5413        | 23.0  | 6486  | 1.7468          | 25.3103 | 25.6927 |
| 1.5249        | 24.0  | 6768  | 1.7471          | 25.3128 | 25.698  |
| 1.5052        | 25.0  | 7050  | 1.7449          | 25.4046 | 25.6813 |
| 1.5052        | 26.0  | 7332  | 1.7444          | 25.5513 | 25.7833 |
| 1.4825        | 27.0  | 7614  | 1.7448          | 25.4756 | 25.632  |
| 1.4825        | 28.0  | 7896  | 1.7432          | 25.6046 | 25.658  |
| 1.4665        | 29.0  | 8178  | 1.7422          | 25.6138 | 25.6907 |
| 1.4665        | 30.0  | 8460  | 1.7420          | 25.7196 | 25.7    |
| 1.4508        | 31.0  | 8742  | 1.7420          | 25.8684 | 25.618  |
| 1.4394        | 32.0  | 9024  | 1.7420          | 25.8188 | 25.6007 |
| 1.4394        | 33.0  | 9306  | 1.7417          | 25.9295 | 25.6113 |
| 1.4318        | 34.0  | 9588  | 1.7421          | 25.9842 | 25.614  |
| 1.4318        | 35.0  | 9870  | 1.7408          | 26.1045 | 25.5933 |
| 1.4244        | 36.0  | 10152 | 1.7409          | 26.0496 | 25.6327 |
| 1.4244        | 37.0  | 10434 | 1.7417          | 26.0595 | 25.6347 |
| 1.4139        | 38.0  | 10716 | 1.7420          | 26.0515 | 25.6047 |
| 1.4139        | 39.0  | 10998 | 1.7417          | 26.0727 | 25.616  |
| 1.4135        | 40.0  | 11280 | 1.7418          | 26.0557 | 25.6033 |


### Framework versions

- Transformers 4.22.1
- Pytorch 1.12.1
- Datasets 2.5.1
- Tokenizers 0.11.0