metadata
license: mit
library_name: mlx
language:
- en
base_model: Zyphra/ZR1-1.5B
datasets:
- AI-MO/NuminaMath-CoT
- codeparrot/apps
- deepmind/code_contests
- BAAI/TACO
- MatrixStudio/Codeforces-Python-Submissions
pipeline_tag: text-generation
tags:
- mlx
dinerburger/ZR1-1.5B-mlx-8bit
This model dinerburger/ZR1-1.5B-mlx-8bit was converted to MLX format from Zyphra/ZR1-1.5B using mlx-lm version 0.22.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("dinerburger/ZR1-1.5B-mlx-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)