muk-luganda-digits-classification-clean

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1182
  • Accuracy: 0.4074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3019 1.0 54 2.3080 0.0741
2.3011 2.0 108 2.3017 0.1852
2.2894 3.0 162 2.3069 0.0370
2.2761 4.0 216 2.3072 0.1481
2.2574 5.0 270 2.2921 0.1111
2.2345 6.0 324 2.2809 0.1481
2.2061 7.0 378 2.2674 0.2593
2.1754 8.0 432 2.2683 0.2593
2.1463 9.0 486 2.2374 0.1852
2.1 10.0 540 2.2400 0.2593
2.0551 11.0 594 2.2009 0.2963
2.0238 12.0 648 2.1784 0.2593
1.9852 13.0 702 2.1676 0.2963
1.9571 14.0 756 2.1834 0.2593
1.9168 15.0 810 2.1502 0.3333
1.8981 16.0 864 2.1212 0.3704
1.8546 17.0 918 2.1315 0.4074
1.8475 18.0 972 2.1182 0.4074
1.8346 19.0 1026 2.1224 0.4074
1.8144 20.0 1080 2.1182 0.4074

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
94.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dmusingu/muk-luganda-digits-classification-clean

Finetuned
(876)
this model