Diffusers documentation

Instalação

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.32.2).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Instalação

🤗 Diffusers é testado no Python 3.8+, PyTorch 1.7.0+, e Flax. Siga as instruções de instalação abaixo para a biblioteca de deep learning que você está utilizando:

  • PyTorch instruções de instalação
  • Flax instruções de instalação

Instalação com pip

Recomenda-se instalar 🤗 Diffusers em um ambiente virtual. Se você não está familiarizado com ambiente virtuals, veja o guia. Um ambiente virtual deixa mais fácil gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.

Comece criando um ambiente virtual no diretório do projeto:

python -m venv .env

Ative o ambiente virtual:

source .env/bin/activate

Recomenda-se a instalação do 🤗 Transformers porque 🤗 Diffusers depende de seus modelos:

Pytorch
Hide Pytorch content
pip install diffusers["torch"] transformers
JAX
Hide JAX content
pip install diffusers["flax"] transformers

Instalação a partir do código fonte

Antes da instalação do 🤗 Diffusers a partir do código fonte, certifique-se de ter o PyTorch e o 🤗 Accelerate instalados.

Para instalar o 🤗 Accelerate:

pip install accelerate

então instale o 🤗 Diffusers do código fonte:

pip install git+https://github.com/huggingface/diffusers

Esse comando instala a última versão em desenvolvimento main em vez da última versão estável stable. A versão main é útil para se manter atualizado com os últimos desenvolvimentos. Por exemplo, se um bug foi corrigido desde o último lançamento estável, mas um novo lançamento ainda não foi lançado. No entanto, isso significa que a versão main pode não ser sempre estável. Nós nos esforçamos para manter a versão main operacional, e a maioria dos problemas geralmente são resolvidos em algumas horas ou um dia. Se você encontrar um problema, por favor abra uma Issue, assim conseguimos arrumar o quanto antes!

Instalação editável

Você precisará de uma instalação editável se você:

  • Usar a versão main do código fonte.
  • Contribuir para o 🤗 Diffusers e precisa testar mudanças no código.

Clone o repositório e instale o 🤗 Diffusers com os seguintes comandos:

git clone https://github.com/huggingface/diffusers.git
cd diffusers
Pytorch
Hide Pytorch content
pip install -e ".[torch]"
JAX
Hide JAX content
pip install -e ".[flax]"

Esses comandos irá linkar a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python. Python então irá procurar dentro da pasta que você clonou além dos caminhos normais das bibliotecas. Por exemplo, se o pacote python for tipicamente instalado no ~/anaconda3/envs/main/lib/python3.10/site-packages/, o Python também irá procurar na pasta ~/diffusers/ que você clonou.

Você deve deixar a pasta diffusers se você quiser continuar usando a biblioteca.

Agora você pode facilmente atualizar seu clone para a última versão do 🤗 Diffusers com o seguinte comando:

cd ~/diffusers/
git pull

Seu ambiente Python vai encontrar a versão main do 🤗 Diffusers na próxima execução.

Cache

Os pesos e os arquivos dos modelos são baixados do Hub para o cache que geralmente é o seu diretório home. Você pode mudar a localização do cache especificando as variáveis de ambiente HF_HOME ou HUGGINFACE_HUB_CACHE ou configurando o parâmetro cache_dir em métodos como from_pretrained().

Aquivos em cache permitem que você rode 🤗 Diffusers offline. Para prevenir que o 🤗 Diffusers se conecte à internet, defina a variável de ambiente HF_HUB_OFFLINE para True e o 🤗 Diffusers irá apenas carregar arquivos previamente baixados em cache.

export HF_HUB_OFFLINE=True

Para mais detalhes de como gerenciar e limpar o cache, olhe o guia de caching.

Telemetria

Nossa biblioteca coleta informações de telemetria durante as requisições from_pretrained(). O dado coletado inclui a versão do 🤗 Diffusers e PyTorch/Flax, o modelo ou classe de pipeline requisitado, e o caminho para um checkpoint pré-treinado se ele estiver hospedado no Hugging Face Hub. Esse dado de uso nos ajuda a debugar problemas e priorizar novas funcionalidades. Telemetria é enviada apenas quando é carregado modelos e pipelines do Hub, e não é coletado se você estiver carregando arquivos locais.

Nos entendemos que nem todo mundo quer compartilhar informações adicionais, e nós respeitamos sua privacidade. Você pode desabilitar a coleta de telemetria definindo a variável de ambiente DISABLE_TELEMETRY do seu terminal:

No Linux/MacOS:

export DISABLE_TELEMETRY=YES

No Windows:

set DISABLE_TELEMETRY=YES
< > Update on GitHub