Model Card for Model ID
This modelcard aims to be a base template for new models. It has been generated using this raw template.
Model Details
Model Description
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
import ctranslate2 import transformers
translator = ctranslate2.Translator("t5_ct2") tokenizer = transformers.AutoTokenizer.from_pretrained("t5_ct2")
input_text = " translate German to English: Ich erkläre die am Freitag, dem 17. Dezember 1999 unterbrochene Sitzungsperiode des Europäischen Parlaments für wieder aufgenommen, und wünsche Ihnen nochmals ein glückliches neues Jahr in der Hoffnung, daß Sie eine angenehme Festzeit genossen haben. Obwohl der gefürchtete 'Jahrtausendfehler' nicht zustande gekommen ist, erlitten die Menschen in einigen Ländern noch immer eine Reihe von Naturkatastrophen, die wirklich furchtbar waren." input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_text))
results = translator.translate_batch([input_tokens])
output_tokens = results[0].hypotheses[0] output_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(output_tokens))
print(output_text)
If u want to translate en to de , you can change the prefix " translate English to German" is ok.
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
Model tree for doinv/t5_small_en_to_de_bidirectional_ct2
Base model
google-t5/t5-small