请问以FAN结构的Tranformer是否存在这种可能性:明标1B实际1B但事实训练的时候,显存或者内存占用等同于3B的占用量?
#2
by
abaabbbab
- opened
https://github.com/jingyaogong/minimind
最近在尝试在Minimind借助AI工具,让AI生成FAN实现,去复现FAN去替代MLP,但发现Minimind报告FAN的参数与原来已有的MLP参数结果是不一样的。
使用DyT( https://jiachenzhu.github.io/DyT/ )的:
$ python train_pretrain.py --epoch 2
LLM可训练总参数量:25.830 百万
使用DyT( https://jiachenzhu.github.io/DyT/ )加FAN的:
python train_pretrain.py --epoch 2
LLM可训练总参数量:11.686 百万
但请不要误会,我们正在问的是,明标1B实际1B但事实训练的时候,显存或者内存占用等同于3B的占用量?
这个主题。
以下是改动后的源码:
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
# MiniMind Config
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
from transformers import PretrainedConfig
class MiniMindConfig(PretrainedConfig):
model_type = "minimind"
def __init__(
self,
dropout: float = 0.0,
bos_token_id: int = 1,
eos_token_id: int = 2,
hidden_act: str = 'silu',
hidden_size: int = 512,
intermediate_size: int = None,
max_position_embeddings: int = 32768,
num_attention_heads: int = 8,
num_hidden_layers: int = 8,
num_key_value_heads: int = 2,
vocab_size: int = 6400,
rms_norm_eps: float = 1e-05,
rope_theta: int = 1000000.0,
flash_attn: bool = True,
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
use_moe: bool = False,
num_experts_per_tok: int = 2,
n_routed_experts: int = 4,
n_shared_experts: int = 1,
scoring_func: str = 'softmax',
aux_loss_alpha: float = 0.1,
seq_aux: bool = True,
norm_topk_prob: bool = True,
dyt_init_alpha_attention: float = 0.5,
dyt_init_alpha_other: float = 0.5,
**kwargs
):
super().__init__(**kwargs)
self.dropout = dropout
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.vocab_size = vocab_size
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.flash_attn = flash_attn
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
self.use_moe = use_moe
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
self.n_routed_experts = n_routed_experts # 总的专家数量
self.n_shared_experts = n_shared_experts # 共享专家
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
self.dyt_init_alpha_attention = dyt_init_alpha_attention
self.dyt_init_alpha_other = dyt_init_alpha_other
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
# MiniMind Model
# 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘
import math
import torch
from torch import nn
from transformers.activations import ACT2FN
from typing import Optional, Tuple, List, Union
import torch.nn.functional as F
from transformers import PreTrainedModel, GenerationMixin, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
class DyT(nn.Module):
def __init__(self, C: int, init_alpha: float = 0.5):
"""
Dynamic Tanh (DyT) layer.
Replaces normalization layers like LayerNorm or RMSNorm.
Args:
C (int): The dimension of the input features (number of channels).
This corresponds to 'hidden_size' in your MiniMindConfig.
init_alpha (float): The initial value for the learnable scalar 'alpha'.
The paper suggests 0.5 as a good default for non-LLM models,
but LLMs might need specific tuning (e.g., different values
for attention blocks vs. other blocks).
"""
super().__init__()
self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
self.gamma = nn.Parameter(torch.ones(C))
self.beta = nn.Parameter(torch.zeros(C))
def forward(self, x: torch.Tensor) -> torch.Tensor:
original_dtype = x.dtype
x_for_computation = x.to(torch.float32)
transformed_x = torch.tanh(self.alpha * x_for_computation)
output = self.gamma * transformed_x + self.beta
return output.to(original_dtype)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device)
freqs = torch.outer(t, freqs).float()
freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1)
freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1)
return freqs_cos, freqs_sin
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
def rotate_half(x):
return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1)
q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim))
k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim))
return q_embed, k_embed
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, num_key_value_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, num_key_value_heads, n_rep, head_dim)
.reshape(bs, slen, num_key_value_heads * n_rep, head_dim)
)
class FANLayerPrime(nn.Module):
def __init__(self, hidden_size: int, p_periodic_ratio: float = 0.25): # p_periodic_ratio controls output dim
super().__init__()
# hidden_size is d_h
# d_p in FAN paper corresponds to the output dimension of the periodic part's projection
# d_p_bar for non-periodic part
# For FANformer's ATF, X_F should have same dim as X to feed into W_Q, W_K, W_V
# So, let d_periodic_out be p_periodic_ratio * hidden_size, and d_linear_out be (1-p_periodic_ratio) * hidden_size
# The concatenated output will be larger.
# OR, FANLayer' uses X to compute both parts, and W_Q, W_K, W_V take this larger X_F.
# Let's assume X_F is concatenated from [cos_part || sin_part || linear_part]
# And W_Q, W_K, W_V are adjusted to take this larger dimension.
# For simplicity in ATF(X) = Attention(FANLayer'(X)), let's assume FANLayer' output dim is d_h.
# This means W_p projects to d_h/3, W_p̄ to d_h/3 conceptually for concatenation to d_h.
# Or, the paper implies p controls split of input X, and then projections map back to d_h total for X_F.
# The simplest way to follow FANformer Fig 2 (right, pseudocode for ATF) and "Attention(FANLayer'(X))":
# FANLayer' projects X to X_F (same dim d_h), then QKV projects X_F.
# Let's make W_p output p*d_h, W_p̄ output (1-2p)*d_h for periodic part to have 2p*d_h from cos/sin
# and (1-2p)*d_h from linear part, concatenating to d_h. Let p=0.25 as default.
self.d_periodic_out_half = int(hidden_size * p_periodic_ratio) # for cos, and for sin separately
self.d_linear_out = hidden_size - 2 * self.d_periodic_out_half
if self.d_linear_out <= 0:
raise ValueError("p_periodic_ratio is too large, hidden_size must be > 2 * int(hidden_size * p_periodic_ratio)")
self.W_p = nn.Linear(hidden_size, self.d_periodic_out_half, bias=False)
self.W_p_bar = nn.Linear(hidden_size, self.d_linear_out, bias=False)
self.B_p_bar = nn.Parameter(torch.zeros(self.d_linear_out)) # Bias for the linear part
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x shape: (bsz, seq_len, hidden_size)
cos_part = torch.cos(self.W_p(x))
sin_part = torch.sin(self.W_p(x))
linear_part = self.W_p_bar(x) + self.B_p_bar
# Concatenate along the last dimension
# Output shape: (bsz, seq_len, 2*d_periodic_out_half + d_linear_out) which is hidden_size
return torch.cat((cos_part, sin_part, linear_part), dim=-1)
# In model_minimind.py
# Define the full FAN layer from paper 2410.02675
class FullFANLayer(nn.Module):
def __init__(self, hidden_size: int, fan_d_p_ratio: float = 0.25, activation_fn_str: str = 'silu'):
super().__init__()
# d_p from paper 2410.02675 is the output dimension of W_p for cos/sin parts
# d_p_bar is for the σ(B + Wx) part
# Output of FAN layer is 2*d_p + d_p_bar
# If this replaces an MLP, input_dim and output_dim should usually match hidden_size
# Let's assume output of FullFANLayer should also be hidden_size
self.d_p_out = int(hidden_size * fan_d_p_ratio) # For cos, and for sin
self.d_p_bar_out = hidden_size - 2 * self.d_p_out
if self.d_p_bar_out <= 0:
raise ValueError("fan_d_p_ratio is too large for FullFANLayer to output hidden_size")
self.W_p = nn.Linear(hidden_size, self.d_p_out, bias=False)
self.W_p_bar = nn.Linear(hidden_size, self.d_p_bar_out, bias=True) # B_p_bar is the bias here
self.activation_fn = ACT2FN[activation_fn_str]
self.dropout = nn.Dropout(0.0) # Assuming config.dropout could be used
def forward(self, x: torch.Tensor) -> torch.Tensor:
cos_part = torch.cos(self.W_p(x))
sin_part = torch.sin(self.W_p(x))
# W_p_bar(x) already includes bias B_p_bar
activated_linear_part = self.activation_fn(self.W_p_bar(x))
output = torch.cat((cos_part, sin_part, activated_linear_part), dim=-1)
return self.dropout(output) # Mimicking FeedForward dropout
class Attention(nn.Module):
def __init__(self, args: MiniMindConfig):
super().__init__()
self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads
assert args.num_attention_heads % self.num_key_value_heads == 0
self.n_local_heads = args.num_attention_heads
self.n_local_kv_heads = self.num_key_value_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.hidden_size // args.num_attention_heads
self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
def forward(self,
x: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor], # 修改为接收cos和sin
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache=False,
attention_mask: Optional[torch.Tensor] = None):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
cos, sin = position_embeddings
xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len])
# kv_cache实现
if past_key_value is not None:
xk = torch.cat([past_key_value[0], xk], dim=1)
xv = torch.cat([past_key_value[1], xv], dim=1)
past_kv = (xk, xv) if use_cache else None
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
attn_mask = None
if attention_mask is not None:
attn_mask = attention_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seq_len, -1)
attn_mask = attn_mask.bool() if attention_mask is not None else None
output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=True)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores = scores + torch.triu(
torch.full((seq_len, seq_len), float("-inf"), device=scores.device),
diagonal=1
).unsqueeze(0).unsqueeze(0) # scores+mask
if attention_mask is not None:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
scores = scores + extended_attention_mask
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.o_proj(output))
return output, past_kv
class FeedForward(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
if config.intermediate_size is None:
intermediate_size = int(config.hidden_size * 8 / 3)
config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64)
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.dropout = nn.Dropout(config.dropout)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))
class MoEGate(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
self.scoring_func = config.scoring_func
self.alpha = config.aux_loss_alpha
self.seq_aux = config.seq_aux
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
self.reset_parameters()
def reset_parameters(self) -> None:
import torch.nn.init as init
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, self.weight, None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
if self.training and self.alpha > 0.0:
scores_for_aux = scores
aux_topk = self.top_k
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
if self.seq_aux:
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
ce.scatter_add_(1, topk_idx_for_aux_loss,
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
seq_len * aux_topk / self.n_routed_experts)
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
else:
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
ce = mask_ce.float().mean(0)
Pi = scores_for_aux.mean(0)
fi = ce * self.n_routed_experts
aux_loss = (Pi * fi).sum() * self.alpha
else:
aux_loss = 0
return topk_idx, topk_weight, aux_loss
class MOEFeedForward(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.experts = nn.ModuleList([
FeedForward(config)
for _ in range(config.n_routed_experts)
])
self.gate = MoEGate(config)
if config.n_shared_experts > 0:
self.shared_experts = nn.ModuleList([
FeedForward(config)
for _ in range(config.n_shared_experts)
])
def forward(self, x):
identity = x
orig_shape = x.shape
bsz, seq_len, _ = x.shape
# 使用门控机制选择专家
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
y = torch.empty_like(x, dtype=torch.float16)
for i, expert in enumerate(self.experts):
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape)
else:
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
if self.config.n_shared_experts > 0:
for expert in self.shared_experts:
y = y + expert(identity)
self.aux_loss = aux_loss
return y
@torch
.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.config.num_experts_per_tok
# 当tokens_per_expert = [6, 15, 20, 26],tokens_per_expert.shape[0]即为专家数量(此时为4)
# 且token_idxs = [3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] 时
# 意味token_idxs[:6] -> [3, 7, 19, 21, 24, 25]这6个位置属于专家0处理的token(每个token有可能被多个专家处理,这取决于num_experts_per_tok)
# 接下来9个位置token_idxs[6:15] -> [4, 5, 6, 10, 11, 12...]属于专家1处理的token...依此类推
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens).to(expert_cache.dtype)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
return expert_cache
class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: MiniMindConfig):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_dim = config.hidden_size // config.num_attention_heads
self.self_attn = Attention(config)
self.fan_layer_prime = FANLayerPrime(config.hidden_size, p_periodic_ratio=0.25)
self.layer_id = layer_id
# self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.input_layernorm = DyT(C=config.hidden_size, init_alpha=config.dyt_init_alpha_attention)
self.post_attention_layernorm = DyT(C=config.hidden_size, init_alpha=config.dyt_init_alpha_other)
# self.mlp = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
self.mlp = FullFANLayer(config.hidden_size, fan_d_p_ratio=0.25, activation_fn_str=config.hidden_act)
def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None):
residual = hidden_states
hidden_states_normed = self.input_layernorm(hidden_states)
# NEW: Apply FANLayerPrime
hidden_states_fan_processed = self.fan_layer_prime(hidden_states_normed)
# Pass FAN-processed states to attention
hidden_states, present_key_value = self.self_attn(
hidden_states_fan_processed, # MODIFIED INPUT
position_embeddings,
past_key_value, use_cache, attention_mask
)
hidden_states += residual
residual_mlp = hidden_states
hidden_states_normed_for_mlp = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states_normed_for_mlp)
hidden_states += residual_mlp
return hidden_states, present_key_value
class MiniMindModel(nn.Module):
def __init__(self, config: MiniMindConfig):
super().__init__()
self.config = config
self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([MiniMindBlock(l, config) for l in range(self.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads,
end=config.max_position_embeddings, theta=config.rope_theta)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
**kwargs):
batch_size, seq_length = input_ids.shape
past_key_values = past_key_values or [None] * len(self.layers)
start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0
hidden_states = self.dropout(self.embed_tokens(input_ids))
position_embeddings = (
self.freqs_cos[start_pos:start_pos + seq_length],
self.freqs_sin[start_pos:start_pos + seq_length]
)
presents = []
for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
hidden_states, present = layer(
hidden_states,
position_embeddings,
past_key_value=past_key_value,
use_cache=use_cache,
attention_mask=attention_mask
)
presents.append(present)
hidden_states = self.norm(hidden_states)
aux_loss = sum(
layer.mlp.aux_loss
for layer in self.layers
if isinstance(layer.mlp, MOEFeedForward)
)
return hidden_states, presents, aux_loss
class MiniMindForCausalLM(PreTrainedModel, GenerationMixin):
config_class = MiniMindConfig
def __init__(self, config: MiniMindConfig = None):
self.config = config or MiniMindConfig()
super().__init__(self.config)
self.model = MiniMindModel(self.config)
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.model.embed_tokens.weight = self.lm_head.weight
self.OUT = CausalLMOutputWithPast()
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
logits_to_keep: Union[int, torch.Tensor] = 0,
**args):
h, past_kvs, aux_loss = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
**args
)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(h[:, slice_indices, :])
self.OUT.__setitem__('last_hidden_state', h)
self.OUT.__setitem__('logits', logits)
self.OUT.__setitem__('aux_loss', aux_loss)
self.OUT.__setitem__('past_key_values', past_kvs)
return self.OUT
abaabbbab
changed discussion title from
请问以FAN结构的Tranformer是否存在这种可能性:明标1B实际1B但显存或者内存占用等同于3B的占用量?
to 请问以FAN结构的Tranformer是否存在这种可能性:明标1B实际1B但事实训练的时候,显存或者内存占用等同于3B的占用量?
抱歉,当我没说。原来是batch_size太高了。