MegaTTS3-WaveVAE / README.md
drbaph's picture
Update README.md
e1e4a7a verified
---
license: apache-2.0
tags:
- text-to-speech
- tts
- voice-cloning
- speech-synthesis
- pytorch
- audio
- chinese
- english
- zero-shot
- diffusion
library_name: transformers
pipeline_tag: text-to-speech
---
# MegaTTS3-WaveVAE: Complete Voice Cloning Model
<div align="center">
<h3>πŸš€ <a href="https://github.com/Saganaki22/MegaTTS3-WaveVAE">GitHub Repository</a></h3>
<img src="https://img.shields.io/github/stars/Saganaki22/MegaTTS3-WaveVAE?style=social" alt="GitHub Stars">
<img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="License">
<img src="https://img.shields.io/badge/Platform-Windows-blue" alt="Platform">
<img src="https://img.shields.io/badge/Language-Chinese%20%7C%20English-red" alt="Language">
</div>
## About
This is a **complete MegaTTS3 model** with **WaveVAE support** for zero-shot voice cloning. Unlike the original ByteDance release, this includes the full WaveVAE encoder/decoder, enabling direct voice cloning from audio samples.
**Key Features:**
- 🎯 Zero-shot voice cloning from any 3-24 second audio sample
- 🌍 Bilingual: Chinese, English, and code-switching
- ⚑ Efficient: 0.45B parameter diffusion transformer
- πŸ”§ Complete: Includes WaveVAE (missing from original)
- πŸŽ›οΈ Controllable: Adjustable voice similarity and clarity
- πŸ’» Windows ready: One-click installer available
## Quick Start
### Installation
**[πŸ“₯ One-Click Windows Installer](https://github.com/Saganaki22/MegaTTS3-WaveVAE/releases/tag/Installer)** - Automated setup with GPU detection
Or see [manual installation](https://github.com/Saganaki22/MegaTTS3-WaveVAE#installation) for advanced users.
### Usage Examples
```bash
# Basic voice cloning
python tts/infer_cli.py --input_wav 'reference.wav' --input_text "Your text here" --output_dir ./output
# Better quality settings
python tts/infer_cli.py --input_wav 'reference.wav' --input_text "Your text here" --output_dir ./output --p_w 2.0 --t_w 3.0
# Web interface (easiest)
python tts/megatts3_gradio.py
# Then open http://localhost:7929
```
## Model Components
- **Diffusion Transformer**: 0.45B parameter TTS model
- **WaveVAE**: High-quality audio encoder/decoder
- **Aligner**: Speech-text alignment model
- **G2P**: Grapheme-to-phoneme converter
## Parameters
- `--p_w` (Intelligibility): 1.0-5.0, higher = clearer speech
- `--t_w` (Similarity): 0.0-10.0, higher = more similar to reference
- **Tip**: Set t_w 0-3 points higher than p_w
## Requirements
- Windows 10/11 or Linux
- Python 3.10
- 8GB+ RAM, NVIDIA GPU recommended
- 5GB+ storage space
## Credits
- **Original MegaTTS3**: [ByteDance Research](https://github.com/bytedance/MegaTTS3)
- **WaveVAE Model**: [ACoderPassBy/MegaTTS-SFT](https://modelscope.cn/models/ACoderPassBy/MegaTTS-SFT) [Apache 2.0]
- **Additional Components**: [mrfakename/MegaTTS3-VoiceCloning](https://huggingface.co/mrfakename/MegaTTS3-VoiceCloning)
- **Windows Implementation & Complete Package**: [Saganaki22/MegaTTS3-WaveVAE](https://github.com/Saganaki22/MegaTTS3-WaveVAE)
- **Special Thanks**: MysteryShack on Discord for model information
## Citation
If you use this model, please cite the original research:
```bibtex
@article{jiang2025sparse,
title={Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis},
author={Jiang, Ziyue and Ren, Yi and Li, Ruiqi and Ji, Shengpeng and Ye, Zhenhui and Zhang, Chen and Jionghao, Bai and Yang, Xiaoda and Zuo, Jialong and Zhang, Yu and others},
journal={arXiv preprint arXiv:2502.18924},
year={2025}
}
@article{ji2024wavtokenizer,
title={Wavtokenizer: an efficient acoustic discrete codec tokenizer for audio language modeling},
author={Ji, Shengpeng and Jiang, Ziyue and Wang, Wen and Chen, Yifu and Fang, Minghui and Zuo, Jialong and Yang, Qian and Cheng, Xize and Wang, Zehan and Li, Ruiqi and others},
journal={arXiv preprint arXiv:2408.16532},
year={2024}
}
```
---
*High-quality voice cloning for research and creative applications. Please use responsibly.*