dtadpole/KernelCoder-32B_20250621-013349

This model is a fine-tuned version of Qwen/Qwen3-32B using Unsloth and LoRA.

Model Details

  • Base Model: Qwen/Qwen3-32B
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Max Sequence Length: 32768
  • Training Examples: 517
  • LoRA Rank: 64
  • LoRA Alpha: 64

Training Configuration

  • Epochs: 2
  • Learning Rate: 5e-05
  • Batch Size: 1
  • Gradient Accumulation Steps: 1

Usage

from unsloth import FastLanguageModel
import torch

# Load model
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="dtadpole/KernelCoder-32B_20250621-013349",
    max_seq_length=32768,
    dtype=None,
    load_in_4bit=True,
)

# Enable inference mode
FastLanguageModel.for_inference(model)

# Format your prompt
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Your question here"}
]

formatted_prompt = tokenizer.apply_chat_template(
    messages, 
    tokenize=False, 
    add_generation_prompt=True
)

# Generate
inputs = tokenizer(formatted_prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Data

This model was fine-tuned on processed conversation experiences for improved performance on specific tasks.

Limitations

  • This is a LoRA adapter that requires the base model to function
  • Performance may vary depending on the specific use case
  • The model inherits any limitations from the base model

Framework Versions

  • Unsloth: 2025.6.1
  • Transformers: 4.52.4
  • PyTorch: 2.7.0
  • PEFT: Latest
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dtadpole/KernelCoder-32B_20250621-013349

Base model

Qwen/Qwen3-32B
Adapter
(52)
this model