segformer-b-finetuned-segments-sidewalk-2
This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:
- Loss: 0.7733
- Mean Iou: 0.2394
- Mean Accuracy: 0.2885
- Overall Accuracy: 0.8145
- Accuarcy Unlabeled: nan
- Accuarcy Flat-road: 0.9002
- Accuarcy Flat-sidewalk: 0.9256
- Accuarcy Flat-crosswalk: 0.6731
- Accuarcy Flat-cyclinglane: 0.7624
- Accuarcy Flat-parkingdriveway: 0.3720
- Accuarcy Flat-railtrack: nan
- Accuarcy Flat-curb: 0.3753
- Accuarcy Human-person: 0.0482
- Accuarcy Human-rider: 0.0
- Accuarcy Vehicle-car: 0.9125
- Accuarcy Vehicle-truck: 0.0
- Accuarcy Vehicle-bus: 0.0
- Accuarcy Vehicle-tramtrain: nan
- Accuarcy Vehicle-motorcycle: 0.0
- Accuarcy Vehicle-bicycle: 0.0
- Accuarcy Vehicle-caravan: 0.0
- Accuarcy Vehicle-cartrailer: 0.0
- Accuarcy Construction-building: 0.8988
- Accuarcy Construction-door: 0.0
- Accuarcy Construction-wall: 0.3240
- Accuarcy Construction-fenceguardrail: 0.0009
- Accuarcy Construction-bridge: 0.0
- Accuarcy Construction-tunnel: nan
- Accuarcy Construction-stairs: 0.0
- Accuarcy Object-pole: 0.0228
- Accuarcy Object-trafficsign: 0.0
- Accuarcy Object-trafficlight: 0.0
- Accuarcy Nature-vegetation: 0.9283
- Accuarcy Nature-terrain: 0.8528
- Accuarcy Sky: 0.9460
- Accuarcy Void-ground: 0.0
- Accuarcy Void-dynamic: 0.0
- Accuarcy Void-static: 0.0014
- Accuarcy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7132
- Iou Flat-sidewalk: 0.8399
- Iou Flat-crosswalk: 0.5677
- Iou Flat-cyclinglane: 0.6711
- Iou Flat-parkingdriveway: 0.2585
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.3157
- Iou Human-person: 0.0474
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.7025
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.6194
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.2615
- Iou Construction-fenceguardrail: 0.0009
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0227
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7851
- Iou Nature-terrain: 0.7352
- Iou Sky: 0.8791
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0014
- Iou Void-unclear: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuarcy Unlabeled | Accuarcy Flat-road | Accuarcy Flat-sidewalk | Accuarcy Flat-crosswalk | Accuarcy Flat-cyclinglane | Accuarcy Flat-parkingdriveway | Accuarcy Flat-railtrack | Accuarcy Flat-curb | Accuarcy Human-person | Accuarcy Human-rider | Accuarcy Vehicle-car | Accuarcy Vehicle-truck | Accuarcy Vehicle-bus | Accuarcy Vehicle-tramtrain | Accuarcy Vehicle-motorcycle | Accuarcy Vehicle-bicycle | Accuarcy Vehicle-caravan | Accuarcy Vehicle-cartrailer | Accuarcy Construction-building | Accuarcy Construction-door | Accuarcy Construction-wall | Accuarcy Construction-fenceguardrail | Accuarcy Construction-bridge | Accuarcy Construction-tunnel | Accuarcy Construction-stairs | Accuarcy Object-pole | Accuarcy Object-trafficsign | Accuarcy Object-trafficlight | Accuarcy Nature-vegetation | Accuarcy Nature-terrain | Accuarcy Sky | Accuarcy Void-ground | Accuarcy Void-dynamic | Accuarcy Void-static | Accuarcy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.2728 | 0.59 | 20 | 2.3946 | 0.1035 | 0.1549 | 0.6540 | nan | 0.6440 | 0.9384 | 0.0 | 0.0006 | 0.0001 | nan | 0.0001 | 0.0 | 0.0 | 0.9243 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6269 | 0.0 | 0.0000 | 0.0002 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9320 | 0.0116 | 0.7234 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4920 | 0.6851 | 0.0 | 0.0006 | 0.0001 | nan | 0.0001 | 0.0 | 0.0 | 0.3557 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4837 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5828 | 0.0115 | 0.7007 | 0.0 | 0.0 | 0.0 | 0.0 |
1.9006 | 1.18 | 40 | 1.7230 | 0.1153 | 0.1706 | 0.6814 | nan | 0.8635 | 0.8762 | 0.0 | 0.0003 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8614 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8115 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9315 | 0.0405 | 0.9034 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4876 | 0.7405 | 0.0 | 0.0003 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.5225 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5210 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6069 | 0.0399 | 0.7696 | 0.0 | 0.0 | 0.0 | 0.0 |
1.6721 | 1.76 | 60 | 1.4574 | 0.1289 | 0.1783 | 0.6968 | nan | 0.8799 | 0.8822 | 0.0 | 0.0528 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8812 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8573 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9298 | 0.1473 | 0.8959 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4937 | 0.7555 | 0.0 | 0.0519 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.5454 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5547 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6303 | 0.1427 | 0.8205 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4066 | 2.35 | 80 | 1.3422 | 0.1589 | 0.2055 | 0.7457 | nan | 0.8230 | 0.9475 | 0.0 | 0.3015 | 0.0047 | nan | 0.0000 | 0.0 | 0.0 | 0.8977 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9091 | 0.6841 | 0.9322 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6093 | 0.7599 | 0.0 | 0.2787 | 0.0046 | nan | 0.0000 | 0.0 | 0.0 | 0.5489 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5596 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7275 | 0.6092 | 0.8285 | 0.0 | 0.0 | 0.0 | 0.0 |
1.3429 | 2.94 | 100 | 1.1795 | 0.1653 | 0.2103 | 0.7562 | nan | 0.8569 | 0.9495 | 0.0 | 0.3507 | 0.0066 | nan | 0.0000 | 0.0 | 0.0 | 0.8981 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8869 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9026 | 0.7728 | 0.8950 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6153 | 0.7730 | 0.0 | 0.3326 | 0.0065 | nan | 0.0000 | 0.0 | 0.0 | 0.5899 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5742 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7403 | 0.6481 | 0.8448 | 0.0 | 0.0 | 0.0 | 0.0 |
1.2661 | 3.53 | 120 | 1.1008 | 0.1712 | 0.2174 | 0.7629 | nan | 0.8484 | 0.9495 | 0.0 | 0.4917 | 0.0181 | nan | 0.0001 | 0.0 | 0.0 | 0.8996 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9043 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8869 | 0.8036 | 0.9371 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6100 | 0.7894 | 0.0 | 0.4346 | 0.0175 | nan | 0.0001 | 0.0 | 0.0 | 0.6153 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5608 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7533 | 0.6752 | 0.8508 | 0.0 | 0.0 | 0.0 | 0.0 |
1.2166 | 4.12 | 140 | 1.0514 | 0.1771 | 0.2232 | 0.7695 | nan | 0.8815 | 0.9342 | 0.0 | 0.5539 | 0.0713 | nan | 0.0030 | 0.0 | 0.0 | 0.9014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9029 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9068 | 0.8398 | 0.9225 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6195 | 0.7981 | 0.0 | 0.5017 | 0.0642 | nan | 0.0030 | 0.0 | 0.0 | 0.6222 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5694 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7585 | 0.6979 | 0.8546 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0262 | 4.71 | 160 | 1.0025 | 0.1782 | 0.2236 | 0.7665 | nan | 0.9188 | 0.9111 | 0.0 | 0.5462 | 0.1006 | nan | 0.0031 | 0.0 | 0.0 | 0.8814 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8881 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9260 | 0.8130 | 0.9404 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5776 | 0.8071 | 0.0 | 0.5005 | 0.0888 | nan | 0.0031 | 0.0 | 0.0 | 0.6651 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5803 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7415 | 0.7028 | 0.8558 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0928 | 5.29 | 180 | 0.9698 | 0.1852 | 0.2308 | 0.7778 | nan | 0.8513 | 0.9428 | 0.0 | 0.6760 | 0.1497 | nan | 0.0419 | 0.0 | 0.0 | 0.8856 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9132 | 0.0 | 0.0056 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9134 | 0.8535 | 0.9219 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6410 | 0.8062 | 0.0 | 0.5617 | 0.1228 | nan | 0.0405 | 0.0 | 0.0 | 0.6597 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5705 | 0.0 | 0.0056 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.7603 | 0.7081 | 0.8642 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8736 | 5.88 | 200 | 0.9250 | 0.1906 | 0.2370 | 0.7850 | nan | 0.9149 | 0.9249 | 0.0001 | 0.7226 | 0.1944 | nan | 0.0715 | 0.0027 | 0.0 | 0.8853 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8917 | 0.0 | 0.0153 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.9353 | 0.8470 | 0.9402 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6511 | 0.8250 | 0.0001 | 0.5978 | 0.1516 | nan | 0.0682 | 0.0027 | 0.0 | 0.6817 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5862 | 0.0 | 0.0152 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.7477 | 0.7159 | 0.8635 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7832 | 6.47 | 220 | 0.8852 | 0.1961 | 0.2421 | 0.7875 | nan | 0.8962 | 0.9385 | 0.0642 | 0.6975 | 0.2064 | nan | 0.1581 | 0.0003 | 0.0 | 0.8995 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9011 | 0.0 | 0.0392 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.8974 | 0.8728 | 0.9342 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6576 | 0.8222 | 0.0624 | 0.6239 | 0.1577 | nan | 0.1421 | 0.0003 | 0.0 | 0.6802 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5989 | 0.0 | 0.0383 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.7547 | 0.6706 | 0.8700 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7822 | 7.06 | 240 | 0.8621 | 0.2145 | 0.2598 | 0.7992 | nan | 0.8827 | 0.9398 | 0.4415 | 0.7426 | 0.2656 | nan | 0.2218 | 0.0023 | 0.0 | 0.8967 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9092 | 0.0 | 0.0558 | 0.0000 | 0.0 | nan | 0.0 | 0.0020 | 0.0 | 0.0 | 0.9249 | 0.8259 | 0.9429 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6911 | 0.8250 | 0.3902 | 0.6320 | 0.2017 | nan | 0.1950 | 0.0023 | 0.0 | 0.6915 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5886 | 0.0 | 0.0540 | 0.0000 | 0.0 | nan | 0.0 | 0.0020 | 0.0 | 0.0 | 0.7732 | 0.7329 | 0.8703 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6742 | 7.65 | 260 | 0.8371 | 0.2193 | 0.2667 | 0.8027 | nan | 0.8766 | 0.9312 | 0.3983 | 0.7724 | 0.2975 | nan | 0.2975 | 0.0055 | 0.0 | 0.9111 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9086 | 0.0 | 0.1602 | 0.0001 | 0.0 | nan | 0.0 | 0.0034 | 0.0 | 0.0 | 0.9371 | 0.8321 | 0.9353 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.6894 | 0.8388 | 0.3591 | 0.6398 | 0.2119 | nan | 0.2519 | 0.0055 | 0.0 | 0.6754 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6033 | 0.0 | 0.1492 | 0.0001 | 0.0 | nan | 0.0 | 0.0034 | 0.0 | 0.0 | 0.7671 | 0.7293 | 0.8750 | 0.0 | 0.0 | 0.0000 | 0.0 |
0.8116 | 8.24 | 280 | 0.8277 | 0.2314 | 0.2819 | 0.8087 | nan | 0.8894 | 0.9207 | 0.6812 | 0.7773 | 0.3594 | nan | 0.3120 | 0.0109 | 0.0 | 0.9016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8885 | 0.0 | 0.2424 | 0.0005 | 0.0 | nan | 0.0 | 0.0107 | 0.0 | 0.0 | 0.9398 | 0.8575 | 0.9461 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.7112 | 0.8407 | 0.5738 | 0.6399 | 0.2424 | nan | 0.2666 | 0.0108 | 0.0 | 0.6924 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6145 | 0.0 | 0.2148 | 0.0005 | 0.0 | nan | 0.0 | 0.0106 | 0.0 | 0.0 | 0.7579 | 0.7244 | 0.8738 | 0.0 | 0.0 | 0.0003 | 0.0 |
0.7791 | 8.82 | 300 | 0.8059 | 0.2255 | 0.2723 | 0.8077 | nan | 0.8684 | 0.9414 | 0.4680 | 0.7998 | 0.2901 | nan | 0.3174 | 0.0107 | 0.0 | 0.8846 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9111 | 0.0 | 0.2193 | 0.0000 | 0.0 | nan | 0.0 | 0.0099 | 0.0 | 0.0 | 0.9290 | 0.8439 | 0.9465 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.7039 | 0.8383 | 0.4188 | 0.6308 | 0.2131 | nan | 0.2698 | 0.0106 | 0.0 | 0.7114 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6008 | 0.0 | 0.1942 | 0.0000 | 0.0 | nan | 0.0 | 0.0099 | 0.0 | 0.0 | 0.7791 | 0.7343 | 0.8760 | 0.0 | 0.0 | 0.0000 | 0.0 |
0.7334 | 9.41 | 320 | 0.7962 | 0.2342 | 0.2830 | 0.8117 | nan | 0.8921 | 0.9332 | 0.6837 | 0.7454 | 0.3381 | nan | 0.3264 | 0.0298 | 0.0 | 0.9198 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9018 | 0.0 | 0.2712 | 0.0003 | 0.0 | nan | 0.0 | 0.0182 | 0.0 | 0.0 | 0.9194 | 0.8508 | 0.9434 | 0.0 | 0.0 | 0.0008 | 0.0 | nan | 0.7121 | 0.8388 | 0.5627 | 0.6590 | 0.2316 | nan | 0.2794 | 0.0296 | 0.0 | 0.6884 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6204 | 0.0 | 0.2324 | 0.0003 | 0.0 | nan | 0.0 | 0.0182 | 0.0 | 0.0 | 0.7820 | 0.7278 | 0.8762 | 0.0 | 0.0 | 0.0008 | 0.0 |
0.7645 | 10.0 | 340 | 0.7783 | 0.2342 | 0.2809 | 0.8133 | nan | 0.8999 | 0.9347 | 0.5997 | 0.7491 | 0.3278 | nan | 0.3613 | 0.0164 | 0.0 | 0.9043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9156 | 0.0 | 0.2684 | 0.0003 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.9235 | 0.8454 | 0.9455 | 0.0 | 0.0 | 0.0007 | 0.0 | nan | 0.7218 | 0.8409 | 0.5162 | 0.6738 | 0.2390 | nan | 0.3039 | 0.0162 | 0.0 | 0.7015 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6019 | 0.0 | 0.2260 | 0.0003 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.7860 | 0.7381 | 0.8764 | 0.0 | 0.0 | 0.0007 | 0.0 |
0.6792 | 10.59 | 360 | 0.7774 | 0.2358 | 0.2841 | 0.8141 | nan | 0.8954 | 0.9341 | 0.6272 | 0.7826 | 0.3543 | nan | 0.3360 | 0.0300 | 0.0 | 0.9162 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.2909 | 0.0005 | 0.0 | nan | 0.0 | 0.0199 | 0.0 | 0.0 | 0.9226 | 0.8558 | 0.9443 | 0.0 | 0.0 | 0.0010 | 0.0 | nan | 0.7198 | 0.8402 | 0.5426 | 0.6699 | 0.2489 | nan | 0.2900 | 0.0297 | 0.0 | 0.6966 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6186 | 0.0 | 0.2450 | 0.0005 | 0.0 | nan | 0.0 | 0.0199 | 0.0 | 0.0 | 0.7835 | 0.7251 | 0.8784 | 0.0 | 0.0 | 0.0010 | 0.0 |
0.8047 | 11.18 | 380 | 0.7734 | 0.2388 | 0.2878 | 0.8147 | nan | 0.8924 | 0.9265 | 0.6512 | 0.7739 | 0.3846 | nan | 0.3762 | 0.0383 | 0.0 | 0.9122 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9053 | 0.0 | 0.3142 | 0.0005 | 0.0 | nan | 0.0 | 0.0216 | 0.0 | 0.0 | 0.9303 | 0.8513 | 0.9427 | 0.0 | 0.0 | 0.0014 | 0.0 | nan | 0.7171 | 0.8421 | 0.5575 | 0.6761 | 0.2609 | nan | 0.3165 | 0.0376 | 0.0 | 0.6982 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6155 | 0.0 | 0.2551 | 0.0005 | 0.0 | nan | 0.0 | 0.0215 | 0.0 | 0.0 | 0.7854 | 0.7377 | 0.8797 | 0.0 | 0.0 | 0.0014 | 0.0 |
0.7136 | 11.76 | 400 | 0.7733 | 0.2394 | 0.2885 | 0.8145 | nan | 0.9002 | 0.9256 | 0.6731 | 0.7624 | 0.3720 | nan | 0.3753 | 0.0482 | 0.0 | 0.9125 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8988 | 0.0 | 0.3240 | 0.0009 | 0.0 | nan | 0.0 | 0.0228 | 0.0 | 0.0 | 0.9283 | 0.8528 | 0.9460 | 0.0 | 0.0 | 0.0014 | 0.0 | nan | 0.7132 | 0.8399 | 0.5677 | 0.6711 | 0.2585 | nan | 0.3157 | 0.0474 | 0.0 | 0.7025 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6194 | 0.0 | 0.2615 | 0.0009 | 0.0 | nan | 0.0 | 0.0227 | 0.0 | 0.0 | 0.7851 | 0.7352 | 0.8791 | 0.0 | 0.0 | 0.0014 | 0.0 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
- Downloads last month
- 192
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for dwang-LI/segformer-b-finetuned-segments-sidewalk-2
Base model
nvidia/mit-b0