metadata
			tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:19985
  - loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
  - source_sentence: 'A trigger of contamination OCD: own hands'
    sentences:
      - 'A trigger of contamination OCD: parking lot buttons'
      - 'A trigger of contamination OCD: touched by strangers'
      - 'A trigger of contamination OCD: using public toilets'
  - source_sentence: 'A trigger of contamination OCD: coughing and sneezing'
    sentences:
      - 'A trigger of contamination OCD: disenfecting'
      - 'A trigger of contamination OCD: masks not worn or not worn correctly'
      - 'A trigger of contamination OCD: hands full of corona viruses'
  - source_sentence: 'A trigger of contamination OCD: after using the toilet at home'
    sentences:
      - 'A trigger of contamination OCD: object coming from outside'
      - 'A trigger of contamination OCD: thoughts of dirty toilet'
      - 'A trigger of contamination OCD: sniffing children'
  - source_sentence: 'A trigger of contamination OCD: masks not worn'
    sentences:
      - 'A trigger of contamination OCD: manicure'
      - >-
        A trigger of contamination OCD: touching objects or surfaces in public
        spaces
      - 'A trigger of contamination OCD: people not wearing a mask'
  - source_sentence: 'A trigger of contamination OCD: money problem'
    sentences:
      - 'A trigger of contamination OCD: typing parking lot number'
      - 'A trigger of contamination OCD: someone touching his nose'
      - 'A trigger of contamination OCD: touching waste in the city'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
dwulff/mpnet-cocs
This is a sentence-transformers model that generates 768-dimensional semantic vectors of triggers of contamination obsessive compulsive symptoms (C-OCS).
The base model (all-mpnet-base-v2) has been fine-tuned on 20k pairs of C-OCS triggers rated for similarity by Llama-3.3-70b-Instruct.
See PREPRINT for details.
Usage
Make sure sentence-transformers is installed:
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dwulff/mpnet-cocs")
# Run inference
sentences = [
    'A trigger of contamination OCD: money problem',
    'A trigger of contamination OCD: someone touching his nose',
    'A trigger of contamination OCD: touching waste in the city',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 19,985 training samples
- Columns: sentence_0,sentence_1, andlabel
- Approximate statistics based on the first 1000 samples:sentence_0 sentence_1 label type string string float details - min: 10 tokens
- mean: 13.15 tokens
- max: 33 tokens
 - min: 10 tokens
- mean: 13.31 tokens
- max: 39 tokens
 - min: 0.0
- mean: 0.37
- max: 1.0
 
- Samples:sentence_0 sentence_1 label A trigger of contamination OCD: odorA trigger of contamination OCD: wearing a mask0.2A trigger of contamination OCD: distance not respectedA trigger of contamination OCD: person not respecting personal distance0.9A trigger of contamination OCD: incongruous colorsA trigger of contamination OCD: my work0.0
- Loss: CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
- per_device_train_batch_size: 64
- per_device_eval_batch_size: 64
- multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: no
- prediction_loss_only: True
- per_device_train_batch_size: 64
- per_device_eval_batch_size: 64
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- torch_empty_cache_steps: None
- learning_rate: 5e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1
- num_train_epochs: 3
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.0
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- tp_size: 0
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: None
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- include_for_metrics: []
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- use_liger_kernel: False
- eval_use_gather_object: False
- average_tokens_across_devices: False
- prompts: None
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | 
|---|---|---|
| 1.5974 | 500 | 0.0231 | 
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 4.0.2
- Transformers: 4.50.0.dev0
- PyTorch: 2.6.0
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
