bert-finetuned-ner
This model is a fine-tuned version of google/mobilebert-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2023
- Precision: 0.8939
- Recall: 0.8939
- F1: 0.8939
- Accuracy: 0.9462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 20 | 0.7266 | 0.5969 | 0.5833 | 0.5900 | 0.7394 |
No log | 2.0 | 40 | 0.5312 | 0.7222 | 0.6894 | 0.7054 | 0.8102 |
No log | 3.0 | 60 | 0.4282 | 0.7717 | 0.7424 | 0.7568 | 0.8612 |
No log | 4.0 | 80 | 0.3508 | 0.8047 | 0.7803 | 0.7923 | 0.8867 |
No log | 5.0 | 100 | 0.2955 | 0.8372 | 0.8182 | 0.8276 | 0.9065 |
No log | 6.0 | 120 | 0.2540 | 0.8550 | 0.8485 | 0.8517 | 0.9150 |
No log | 7.0 | 140 | 0.2299 | 0.8788 | 0.8788 | 0.8788 | 0.9348 |
No log | 8.0 | 160 | 0.2168 | 0.8797 | 0.8864 | 0.8830 | 0.9433 |
No log | 9.0 | 180 | 0.2064 | 0.8939 | 0.8939 | 0.8939 | 0.9462 |
No log | 10.0 | 200 | 0.2023 | 0.8939 | 0.8939 | 0.8939 | 0.9462 |
Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for dylanklark/bert-finetuned-ner
Base model
google/mobilebert-uncased