bert-finetuned-ner

This model is a fine-tuned version of google/mobilebert-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2023
  • Precision: 0.8939
  • Recall: 0.8939
  • F1: 0.8939
  • Accuracy: 0.9462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 20 0.7266 0.5969 0.5833 0.5900 0.7394
No log 2.0 40 0.5312 0.7222 0.6894 0.7054 0.8102
No log 3.0 60 0.4282 0.7717 0.7424 0.7568 0.8612
No log 4.0 80 0.3508 0.8047 0.7803 0.7923 0.8867
No log 5.0 100 0.2955 0.8372 0.8182 0.8276 0.9065
No log 6.0 120 0.2540 0.8550 0.8485 0.8517 0.9150
No log 7.0 140 0.2299 0.8788 0.8788 0.8788 0.9348
No log 8.0 160 0.2168 0.8797 0.8864 0.8830 0.9433
No log 9.0 180 0.2064 0.8939 0.8939 0.8939 0.9462
No log 10.0 200 0.2023 0.8939 0.8939 0.8939 0.9462

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
16
Safetensors
Model size
24.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dylanklark/bert-finetuned-ner

Finetuned
(29)
this model