whisper-small-kh-v3
This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4105
- Wer: 76.8923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 80
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 1.2514 | 1.2300 | 500 | 1.2510 | 118.6532 |
| 1.0397 | 2.4600 | 1000 | 1.0474 | 119.5580 |
| 0.7959 | 3.6900 | 1500 | 0.8172 | 110.5968 |
| 0.6345 | 4.9200 | 2000 | 0.6525 | 102.7667 |
| 0.5037 | 6.1501 | 2500 | 0.5592 | 90.0992 |
| 0.4343 | 7.3801 | 3000 | 0.5061 | 89.5076 |
| 0.3917 | 8.6101 | 3500 | 0.4723 | 84.3223 |
| 0.3718 | 9.8401 | 4000 | 0.4521 | 82.5126 |
| 0.3274 | 11.0701 | 4500 | 0.4379 | 79.6242 |
| 0.3 | 12.3001 | 5000 | 0.4289 | 80.8074 |
| 0.2786 | 13.5301 | 5500 | 0.4216 | 79.2935 |
| 0.2707 | 14.7601 | 6000 | 0.4156 | 77.9711 |
| 0.2732 | 15.9902 | 6500 | 0.4138 | 76.4399 |
| 0.2591 | 17.2202 | 7000 | 0.4123 | 76.6835 |
| 0.2538 | 18.4502 | 7500 | 0.4114 | 77.0663 |
| 0.2458 | 19.6802 | 8000 | 0.4105 | 76.8923 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.8.0+cu126
- Datasets 4.2.0
- Tokenizers 0.19.1
- Downloads last month
- 14
Model tree for dynann/whisper-small-kh-v3
Base model
openai/whisper-tiny