whisper-small-kh-v3

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4105
  • Wer: 76.8923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 80
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2514 1.2300 500 1.2510 118.6532
1.0397 2.4600 1000 1.0474 119.5580
0.7959 3.6900 1500 0.8172 110.5968
0.6345 4.9200 2000 0.6525 102.7667
0.5037 6.1501 2500 0.5592 90.0992
0.4343 7.3801 3000 0.5061 89.5076
0.3917 8.6101 3500 0.4723 84.3223
0.3718 9.8401 4000 0.4521 82.5126
0.3274 11.0701 4500 0.4379 79.6242
0.3 12.3001 5000 0.4289 80.8074
0.2786 13.5301 5500 0.4216 79.2935
0.2707 14.7601 6000 0.4156 77.9711
0.2732 15.9902 6500 0.4138 76.4399
0.2591 17.2202 7000 0.4123 76.6835
0.2538 18.4502 7500 0.4114 77.0663
0.2458 19.6802 8000 0.4105 76.8923

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dynann/whisper-small-kh-v3

Finetuned
(1649)
this model