metadata
language: en
license: mit
library_name: timm
tags:
- image-classification
- resnet34
- cifar100
datasets: cifar100
metrics:
- accuracy
model-index:
- name: resnet34_cifar100
results:
- task:
type: image-classification
dataset:
name: CIFAR-100
type: cifar100
metrics:
- type: accuracy
value: 0.7978
Model Card for Model ID
This model is a small resnet34 trained on cifar100.
- Test Accuracy: 0.7978
- License: MIT
How to Get Started with the Model
Use the code below to get started with the model.
import detectors
import timm
model = timm.create_model("resnet34_cifar100", pretrained=True)
Training Data
Training data is cifar100.
Training Hyperparameters
config:
scripts/train_configs/cifar100.json
model:
resnet34_cifar100
dataset:
cifar100
batch_size:
128
epochs:
300
validation_frequency:
5
seed:
1
criterion:
CrossEntropyLoss
criterion_kwargs:
{}
optimizer:
SGD
lr:
0.1
optimizer_kwargs:
{'momentum': 0.9, 'weight_decay': 0.0005}
scheduler:
CosineAnnealingLR
scheduler_kwargs:
{'T_max': 280}
debug:
False
Testing Data
Testing data is cifar100.
This model card was created by Eduardo Dadalto.