distilbert-base-uncased_fold_8_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6283
  • F1: 0.8178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 290 0.4038 0.7981
0.409 2.0 580 0.4023 0.8176
0.409 3.0 870 0.5245 0.8169
0.1938 4.0 1160 0.6242 0.8298
0.1938 5.0 1450 0.8432 0.8159
0.0848 6.0 1740 1.0887 0.8015
0.038 7.0 2030 1.0700 0.8167
0.038 8.0 2320 1.0970 0.8241
0.0159 9.0 2610 1.2474 0.8142
0.0159 10.0 2900 1.3453 0.8184
0.01 11.0 3190 1.4412 0.8147
0.01 12.0 3480 1.4263 0.8181
0.007 13.0 3770 1.3859 0.8258
0.0092 14.0 4060 1.4633 0.8128
0.0092 15.0 4350 1.4304 0.8206
0.0096 16.0 4640 1.5081 0.8149
0.0096 17.0 4930 1.5239 0.8189
0.0047 18.0 5220 1.5268 0.8151
0.0053 19.0 5510 1.5445 0.8173
0.0053 20.0 5800 1.6051 0.8180
0.0014 21.0 6090 1.5981 0.8211
0.0014 22.0 6380 1.5957 0.8225
0.001 23.0 6670 1.5838 0.8189
0.001 24.0 6960 1.6301 0.8178
0.0018 25.0 7250 1.6283 0.8178

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support