Improve language tag
#1
by
lbourdois
- opened
README.md
CHANGED
|
@@ -1,59 +1,70 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
|
| 4 |
-
language:
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
-
|
| 15 |
-
-
|
| 16 |
-
-
|
| 17 |
-
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
|
| 4 |
+
language:
|
| 5 |
+
- zho
|
| 6 |
+
- eng
|
| 7 |
+
- fra
|
| 8 |
+
- spa
|
| 9 |
+
- por
|
| 10 |
+
- deu
|
| 11 |
+
- ita
|
| 12 |
+
- rus
|
| 13 |
+
- jpn
|
| 14 |
+
- kor
|
| 15 |
+
- vie
|
| 16 |
+
- tha
|
| 17 |
+
- ara
|
| 18 |
+
datasets:
|
| 19 |
+
- erayalp/easy_turkish_math_reasoning
|
| 20 |
+
base_model:
|
| 21 |
+
- Qwen/Qwen2.5-0.5B-Instruct
|
| 22 |
+
pipeline_tag: text-generation
|
| 23 |
+
library_name: transformers
|
| 24 |
+
tags:
|
| 25 |
+
- curriculum-learning
|
| 26 |
+
- math
|
| 27 |
+
- supervised-fine-tuning
|
| 28 |
+
- turkish
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
## Objective
|
| 32 |
+
The goal of this project is to enhance the reasoning ability of the compact Qwen2.5-0.5B model on Turkish math questions. Using supervised fine-tuning (SFT) on simpler examples as a starting point, the model will be progressively improved through curriculum learning, and later refined using Group Relative Policy Optimization (GRPO) to boost multi-step reasoning performance.
|
| 33 |
+
|
| 34 |
+
#### This model is intended for:
|
| 35 |
+
- Research on curriculum learning in small models
|
| 36 |
+
- Evaluating Turkish math reasoning tasks
|
| 37 |
+
|
| 38 |
+
### Limitations
|
| 39 |
+
- Currently only trained on simpler math examples — lacks robustness for multi-step or abstract reasoning.
|
| 40 |
+
- May produce incorrect or overconfident answers on complex tasks.
|
| 41 |
+
- Performance may be sensitive to prompt phrasing.
|
| 42 |
+
|
| 43 |
+
### Roadmap
|
| 44 |
+
1. **Phase 1: SFT with basic arithmatic and math problems**
|
| 45 |
+
2. Phase 2: SFT with moderately difficult math problems
|
| 46 |
+
3. Phase 3: SFT with full-scale GSM8K-TR complexity
|
| 47 |
+
4. Phase 4: GRPO-based training to optimize multi-step reasoning and reduce hallucinations
|
| 48 |
+
|
| 49 |
+
## How to Use
|
| 50 |
+
|
| 51 |
+
You can easily run inference using the Transformers library:
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 55 |
+
import torch
|
| 56 |
+
|
| 57 |
+
model_name = "erayalp/qwen2.5-0.5b-instruct-sft-v1-tr-math-easy"
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 60 |
+
model_name,
|
| 61 |
+
torch_dtype="auto",
|
| 62 |
+
device_map="auto"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
prompt = "Ali’nin 3 kalemi vardı. 2 kalem daha aldı. Ali’nin şimdi kaç kalemi var?"
|
| 66 |
+
|
| 67 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 68 |
+
output = model.generate(**inputs, max_new_tokens=256)
|
| 69 |
+
|
| 70 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|