bert-finetuned-ner / README.md
erikotoz's picture
End of training
a80c8f1 verified
metadata
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results: []

bert-finetuned-ner

This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0881
  • Precision: 0.8860
  • Recall: 0.9197
  • F1: 0.9026
  • Accuracy: 0.9801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0671 1.0 1250 0.0929 0.8681 0.9150 0.8909 0.9774
0.0428 2.0 2500 0.0871 0.8909 0.9177 0.9041 0.9800
0.0373 3.0 3750 0.0881 0.8860 0.9197 0.9026 0.9801

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1