See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_resume_from_checkpoints: false
base_model: JackFram/llama-68m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes:
datasets:
- data_files:
- 623d9787d7fd7d0e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/623d9787d7fd7d0e_train_data.json
type:
field_instruction: text
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/24906023-f4b5-47c9-a7fb-6b92b845bc17
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 24
mlflow_experiment_name: /tmp/623d9787d7fd7d0e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 256
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: af6de128-8865-42e8-800b-ff2d2b1acccd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: af6de128-8865-42e8-800b-ff2d2b1acccd
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
24906023-f4b5-47c9-a7fb-6b92b845bc17
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.152 | 0.0016 | 1 | 2.3080 |
0.0209 | 0.3108 | 200 | 0.0117 |
0.0028 | 0.6216 | 400 | 0.0062 |
0.0012 | 0.9324 | 600 | 0.0035 |
0.0022 | 1.2432 | 800 | 0.0031 |
0.0013 | 1.5540 | 1000 | 0.0030 |
0.001 | 1.8648 | 1200 | 0.0022 |
0.0026 | 2.1756 | 1400 | 0.0018 |
0.0011 | 2.4864 | 1600 | 0.0018 |
0.0005 | 2.7972 | 1800 | 0.0017 |
0.0004 | 3.1080 | 2000 | 0.0012 |
0.0074 | 3.4188 | 2200 | 0.0011 |
0.0003 | 3.7296 | 2400 | 0.0012 |
0.0003 | 4.0404 | 2600 | 0.0011 |
0.0006 | 4.3512 | 2800 | 0.0011 |
0.0005 | 4.6620 | 3000 | 0.0011 |
0.0009 | 4.9728 | 3200 | 0.0011 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for error577/24906023-f4b5-47c9-a7fb-6b92b845bc17
Base model
JackFram/llama-68m