Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: dltjdgh0928/test_instruction
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
  - 91e9da294a4e9b63_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/91e9da294a4e9b63_train_data.json
  type:
    field_input: input
    field_instruction: query
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/3ad5cc57-b475-47ca-b7f8-2b0513f98fd3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/91e9da294a4e9b63_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 256
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 48c38e21-b848-423b-8653-be3d2187dd4c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 48c38e21-b848-423b-8653-be3d2187dd4c
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

3ad5cc57-b475-47ca-b7f8-2b0513f98fd3

This model is a fine-tuned version of dltjdgh0928/test_instruction on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
4.6868 0.0002 1 1.1779
3.8982 0.0308 200 1.0006
4.3617 0.0616 400 0.9965
4.3169 0.0924 600 0.9684
4.196 0.1232 800 0.9938
3.1304 0.1540 1000 0.9786
3.888 0.1848 1200 0.9737

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/3ad5cc57-b475-47ca-b7f8-2b0513f98fd3

Adapter
(196)
this model