See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
- 824ef92913906b02_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/824ef92913906b02_train_data.json
type:
field_input: gt_answer
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: error577/3b560dce-4b9a-4461-bec5-e809c217723b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2000
micro_batch_size: 2
mlflow_experiment_name: /tmp/824ef92913906b02_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: edbc27c0-2567-4ef1-849f-694fac00cd13
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: edbc27c0-2567-4ef1-849f-694fac00cd13
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
3b560dce-4b9a-4461-bec5-e809c217723b
This model is a fine-tuned version of unsloth/SmolLM-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6086 | 0.0001 | 1 | 0.8242 |
0.6491 | 0.0069 | 50 | 0.5668 |
0.4904 | 0.0137 | 100 | 0.5020 |
0.4928 | 0.0206 | 150 | 0.4803 |
0.3963 | 0.0275 | 200 | 0.4617 |
0.4291 | 0.0343 | 250 | 0.4514 |
0.4164 | 0.0412 | 300 | 0.4411 |
0.4261 | 0.0481 | 350 | 0.4344 |
0.4734 | 0.0549 | 400 | 0.4273 |
0.4271 | 0.0618 | 450 | 0.4246 |
0.3362 | 0.0687 | 500 | 0.4193 |
0.3781 | 0.0755 | 550 | 0.4136 |
0.4247 | 0.0824 | 600 | 0.4107 |
0.3431 | 0.0893 | 650 | 0.4071 |
0.3674 | 0.0961 | 700 | 0.4019 |
0.4549 | 0.1030 | 750 | 0.4004 |
0.4299 | 0.1098 | 800 | 0.3972 |
0.3398 | 0.1167 | 850 | 0.3938 |
0.4542 | 0.1236 | 900 | 0.3924 |
0.301 | 0.1304 | 950 | 0.3908 |
0.4517 | 0.1373 | 1000 | 0.3881 |
0.4243 | 0.1442 | 1050 | 0.3865 |
0.3469 | 0.1510 | 1100 | 0.3853 |
0.3413 | 0.1579 | 1150 | 0.3834 |
0.3609 | 0.1648 | 1200 | 0.3815 |
0.3546 | 0.1716 | 1250 | 0.3813 |
0.2967 | 0.1785 | 1300 | 0.3794 |
0.3278 | 0.1854 | 1350 | 0.3783 |
0.3304 | 0.1922 | 1400 | 0.3782 |
0.2565 | 0.1991 | 1450 | 0.3774 |
0.3721 | 0.2060 | 1500 | 0.3764 |
0.4291 | 0.2128 | 1550 | 0.3754 |
0.299 | 0.2197 | 1600 | 0.3757 |
0.4525 | 0.2266 | 1650 | 0.3750 |
0.3902 | 0.2334 | 1700 | 0.3747 |
0.3118 | 0.2403 | 1750 | 0.3737 |
0.3434 | 0.2472 | 1800 | 0.3747 |
0.3902 | 0.2540 | 1850 | 0.3732 |
0.3748 | 0.2609 | 1900 | 0.3742 |
0.3463 | 0.2678 | 1950 | 0.3742 |
0.3441 | 0.2746 | 2000 | 0.3736 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for error577/3b560dce-4b9a-4461-bec5-e809c217723b
Base model
HuggingFaceTB/SmolLM-360M
Quantized
HuggingFaceTB/SmolLM-360M-Instruct
Finetuned
unsloth/SmolLM-360M-Instruct