Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
  - 824ef92913906b02_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/824ef92913906b02_train_data.json
  type:
    field_input: gt_answer
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: error577/3b560dce-4b9a-4461-bec5-e809c217723b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2000
micro_batch_size: 2
mlflow_experiment_name: /tmp/824ef92913906b02_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: edbc27c0-2567-4ef1-849f-694fac00cd13
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: edbc27c0-2567-4ef1-849f-694fac00cd13
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

3b560dce-4b9a-4461-bec5-e809c217723b

This model is a fine-tuned version of unsloth/SmolLM-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3736

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss
0.6086 0.0001 1 0.8242
0.6491 0.0069 50 0.5668
0.4904 0.0137 100 0.5020
0.4928 0.0206 150 0.4803
0.3963 0.0275 200 0.4617
0.4291 0.0343 250 0.4514
0.4164 0.0412 300 0.4411
0.4261 0.0481 350 0.4344
0.4734 0.0549 400 0.4273
0.4271 0.0618 450 0.4246
0.3362 0.0687 500 0.4193
0.3781 0.0755 550 0.4136
0.4247 0.0824 600 0.4107
0.3431 0.0893 650 0.4071
0.3674 0.0961 700 0.4019
0.4549 0.1030 750 0.4004
0.4299 0.1098 800 0.3972
0.3398 0.1167 850 0.3938
0.4542 0.1236 900 0.3924
0.301 0.1304 950 0.3908
0.4517 0.1373 1000 0.3881
0.4243 0.1442 1050 0.3865
0.3469 0.1510 1100 0.3853
0.3413 0.1579 1150 0.3834
0.3609 0.1648 1200 0.3815
0.3546 0.1716 1250 0.3813
0.2967 0.1785 1300 0.3794
0.3278 0.1854 1350 0.3783
0.3304 0.1922 1400 0.3782
0.2565 0.1991 1450 0.3774
0.3721 0.2060 1500 0.3764
0.4291 0.2128 1550 0.3754
0.299 0.2197 1600 0.3757
0.4525 0.2266 1650 0.3750
0.3902 0.2334 1700 0.3747
0.3118 0.2403 1750 0.3737
0.3434 0.2472 1800 0.3747
0.3902 0.2540 1850 0.3732
0.3748 0.2609 1900 0.3742
0.3463 0.2678 1950 0.3742
0.3441 0.2746 2000 0.3736

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/3b560dce-4b9a-4461-bec5-e809c217723b