Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: unsloth/Qwen2.5-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d8b0e80d874b8916_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d8b0e80d874b8916_train_data.json
  type:
    field_instruction: instruction
    field_output: generation
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/46c6853f-c5c7-4cf4-8b2f-14c96891228a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/d8b0e80d874b8916_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: d7203ae8-4753-4218-8461-cee5d4eb3802
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d7203ae8-4753-4218-8461-cee5d4eb3802
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

46c6853f-c5c7-4cf4-8b2f-14c96891228a

This model is a fine-tuned version of unsloth/Qwen2.5-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9390

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.2794 0.0008 1 1.4075
0.9889 0.0827 100 0.9601
1.1141 0.1653 200 0.9499
0.9383 0.2480 300 0.9463
0.8717 0.3306 400 0.9463
1.0189 0.4133 500 0.9367
1.0395 0.4960 600 0.9364
1.0817 0.5786 700 0.9325
1.0038 0.6613 800 0.9276
0.922 0.7440 900 0.9246
1.0791 0.8266 1000 0.9254
0.9752 0.9093 1100 0.9164
0.8466 0.9919 1200 0.9137
0.6698 1.0748 1300 0.9461
0.8372 1.1575 1400 0.9421
0.7766 1.2401 1500 0.9390

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/46c6853f-c5c7-4cf4-8b2f-14c96891228a

Base model

Qwen/Qwen2.5-0.5B
Adapter
(266)
this model