See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: unsloth/Llama-3.2-3B
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
- c9b7d4a6209ec024_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c9b7d4a6209ec024_train_data.json
type:
field_instruction: context
field_output: question
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping:
metric: eval_loss
mode: min
patience: 3
eval_max_new_tokens: 128
eval_steps: 20
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/856ed31c-62d9-4ed5-9989-8f6e5d4c01e3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 300
micro_batch_size: 1
mlflow_experiment_name: /tmp/c9b7d4a6209ec024_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 7f5dd85d-b076-4c99-a5b9-664ad388f4ef
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7f5dd85d-b076-4c99-a5b9-664ad388f4ef
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
856ed31c-62d9-4ed5-9989-8f6e5d4c01e3
This model is a fine-tuned version of unsloth/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.0814 | 0.0009 | 1 | 4.7141 |
1.5844 | 0.0172 | 20 | 1.8652 |
1.6637 | 0.0344 | 40 | 1.8204 |
1.5636 | 0.0515 | 60 | 1.8356 |
1.4937 | 0.0687 | 80 | 1.8590 |
1.6937 | 0.0859 | 100 | 1.8064 |
1.5605 | 0.1031 | 120 | 1.7988 |
1.4112 | 0.1202 | 140 | 1.7772 |
1.6521 | 0.1374 | 160 | 1.7552 |
1.5504 | 0.1546 | 180 | 1.7561 |
1.8864 | 0.1718 | 200 | 1.7429 |
1.6297 | 0.1889 | 220 | 1.7317 |
1.5704 | 0.2061 | 240 | 1.7266 |
1.6367 | 0.2233 | 260 | 1.7198 |
1.4851 | 0.2405 | 280 | 1.7132 |
1.6715 | 0.2576 | 300 | 1.7131 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support