See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_resume_from_checkpoints: true
base_model: unsloth/Qwen2.5-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
- b4e1e78dca27f17f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b4e1e78dca27f17f_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/d7322264-6990-4912-8f00-4b7fec913527
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 6
mlflow_experiment_name: /tmp/b4e1e78dca27f17f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 256
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 9863156c-2655-472a-9593-04723971ea8c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9863156c-2655-472a-9593-04723971ea8c
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
d7322264-6990-4912-8f00-4b7fec913527
This model is a fine-tuned version of unsloth/Qwen2.5-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8284
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0202 | 0.0002 | 1 | 0.9944 |
0.8382 | 0.0486 | 200 | 0.8600 |
0.7219 | 0.0973 | 400 | 0.8554 |
0.7888 | 0.1459 | 600 | 0.8531 |
0.8733 | 0.1945 | 800 | 0.8485 |
0.912 | 0.2431 | 1000 | 0.8490 |
1.0524 | 0.2918 | 1200 | 0.8462 |
0.9352 | 0.3404 | 1400 | 0.8455 |
0.8416 | 0.3890 | 1600 | 0.8447 |
0.836 | 0.4377 | 1800 | 0.8420 |
0.8181 | 0.4863 | 2000 | 0.8417 |
0.7938 | 0.5349 | 2200 | 0.8370 |
0.9718 | 0.5836 | 2400 | 0.8377 |
0.8722 | 0.6322 | 2600 | 0.8354 |
0.7798 | 0.6808 | 2800 | 0.8336 |
0.8641 | 0.7294 | 3000 | 0.8323 |
1.067 | 0.7781 | 3200 | 0.8304 |
0.8644 | 0.8267 | 3400 | 0.8294 |
0.904 | 0.8753 | 3600 | 0.8273 |
0.8817 | 0.9240 | 3800 | 0.8286 |
1.0272 | 0.9726 | 4000 | 0.8275 |
0.5684 | 1.0212 | 4200 | 0.8284 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for error577/d7322264-6990-4912-8f00-4b7fec913527
Base model
Qwen/Qwen2.5-0.5B
Finetuned
Qwen/Qwen2.5-0.5B-Instruct
Finetuned
unsloth/Qwen2.5-0.5B-Instruct