Ties merged COde MAth aNd Reasoning model
This is a merge of pre-trained language models created using mergekit.
Merge Details
This model aims to combine the code and math capabilities by merging multiple Qwen 3 finetunes.
How to run
You can run this model by using multiple interface choices
transformers
As the qwen team suggested to use
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ertghiu256/Qwen3-4b-tcomanr-merge"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
vllm
Run this command
vllm serve ertghiu256/Qwen3-4b-tcomanr-merge --enable-reasoning --reasoning-parser deepseek_r1
Sglang
Run this command
python -m sglang.launch_server --model-path ertghiu256/Qwen3-4b-tcomanr-merge --reasoning-parser deepseek-r1
llama.cpp
Run this command
llama-server --hf-repo ertghiu256/Qwen3-4b-tcomanr-merge
or
llama-cli --hf ertghiu256/Qwen3-4b-tcomanr-merge
ollama
Run this command
ollama run hf.co/ertghiu256/Qwen3-4b-tcomanr-merge:Q4_K_M
lm studio
Search
ertghiu256/Qwen3-4b-tcomanr-merge
in the lm studio model search list then download
Recomended parameters
temp: 0.6
num_ctx: โฅ8192
top_p: 0.95
top_k: 10
Merge Details
This model was merged using the TIES merge method using Qwen/Qwen3-4B as a base.
Models:
The following models were included in the merge:
- ertghiu256/qwen3-4b-code-reasoning
- Tesslate/UIGEN-T3-4B-Preview-MAX
- ertghiu256/qwen-3-4b-mixture-of-thought
- POLARIS-Project/Polaris-4B-Preview
- ertghiu256/qwen3-math-reasoner
- ertghiu256/qwen3-multi-reasoner
- ValiantLabs/Qwen3-4B-Esper3
- ValiantLabs/Qwen3-4B-ShiningValiant3
- prithivMLmods/Crux-Qwen3_OpenThinking-4B
Configuration
The following YAML configuration was used to produce this model:
models:
- model: ertghiu256/qwen3-math-reasoner
parameters:
weight: 0.7
- model: ertghiu256/qwen3-4b-code-reasoning
parameters:
weight: 0.8
- model: ertghiu256/qwen-3-4b-mixture-of-thought
parameters:
weight: 0.9
- model: POLARIS-Project/Polaris-4B-Preview
parameters:
weight: 0.7
- model: ertghiu256/qwen3-multi-reasoner
parameters:
weight: 0.8
- model: ValiantLabs/Qwen3-4B-Esper3
parameters:
weight: 0.8
- model: Tesslate/UIGEN-T3-4B-Preview-MAX
parameters:
weight: 0.8
- model: ValiantLabs/Qwen3-4B-ShiningValiant3
parameters:
weight: 0.9
- model: prithivMLmods/Crux-Qwen3_OpenThinking-4B
parameters:
weight: 0.4
merge_method: ties
base_model: Qwen/Qwen3-4B
parameters:
normalize: true
int8_mask: true
dtype: float16
- Downloads last month
- 370
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ertghiu256/Qwen3-4b-tcomanr-merge
Merge model
this model