This model performs comment categories detect on Turkish texts. It gives sevent outputs:

  • "0": "general_comment",
  • "1": "store_comment",
  • "2": "product_comment"
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

config = AutoConfig.from_pretrained("erythropygia/distilbert-turkish-comment-analysis")
tokenizer = AutoTokenizer.from_pretrained("erythropygia/distilbert-turkish-comment-analysis", config=config)
model = AutoModelForSequenceClassification.from_pretrained("erythropygia/distilbert-turkish-comment-analysis", config=config)

text = "Bu mağazanın ürünleri çok kötü sakın buradan almayın"
inputs = tokenizer(text, return_tensors="pt")

outputs = model(**inputs)
_, predicted = torch.max(outputs.logits, dim=1)

predicted_label = config.id2label[predicted.item()]
print(predicted_label)

#store_comment
Downloads last month
32
Safetensors
Model size
68.1M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support