|
--- |
|
tags: |
|
- espnet |
|
- audio |
|
- speaker-recognition |
|
language: multilingual |
|
datasets: |
|
- cnceleb |
|
license: cc-by-4.0 |
|
--- |
|
|
|
## ESPnet2 SPK model |
|
|
|
### `resnet221` |
|
|
|
This model was trained by holvan using cnceleb recipe in [espnet](https://github.com/espnet/espnet/). |
|
|
|
### Demo: How to use in ESPnet2 |
|
|
|
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) |
|
if you haven't done that already. |
|
|
|
```bash |
|
cd espnet |
|
git checkout d3db63621b5ea1d7b450d768f97c1a6bdf3cf8be |
|
pip install -e . |
|
cd egs2/cnceleb/spk1 |
|
./run.sh --skip_data_prep false --skip_train true --download_model resnet221 |
|
``` |
|
|
|
<!-- Generated by scripts/utils/show_spk_result.py --> |
|
# RESULTS |
|
## Environments |
|
date: 2025-06-17 13:11:19.656417 |
|
|
|
- python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] |
|
- espnet version: 202402 |
|
- pytorch version: 2.3.1 |
|
|
|
| | Mean | Std | |
|
|---|---|---| |
|
| Target | -1.0174 | 0.1565 | |
|
| Non-target | -1.3613 | 0.0660 | |
|
|
|
| Model name | EER(%) | minDCF | |
|
|---|---|---| |
|
| conf/train_resnet221 | 6.003 | 0.29403 | |
|
|
|
## SPK config |
|
|
|
<details><summary>expand</summary> |
|
|
|
``` |
|
config: conf/train_resnet221.yaml |
|
print_config: false |
|
log_level: INFO |
|
drop_last_iter: true |
|
dry_run: false |
|
iterator_type: category |
|
valid_iterator_type: sequence |
|
output_dir: exp/spk_train_resnet221_raw_sp |
|
ngpu: 1 |
|
seed: 0 |
|
num_workers: 8 |
|
num_att_plot: 0 |
|
dist_backend: nccl |
|
dist_init_method: env:// |
|
dist_world_size: 8 |
|
dist_rank: 0 |
|
local_rank: 0 |
|
dist_master_addr: localhost |
|
dist_master_port: 42677 |
|
dist_launcher: null |
|
multiprocessing_distributed: true |
|
unused_parameters: false |
|
sharded_ddp: false |
|
use_deepspeed: false |
|
deepspeed_config: null |
|
gradient_as_bucket_view: true |
|
ddp_comm_hook: null |
|
cudnn_enabled: true |
|
cudnn_benchmark: true |
|
cudnn_deterministic: false |
|
use_tf32: false |
|
collect_stats: false |
|
write_collected_feats: false |
|
max_epoch: 40 |
|
patience: null |
|
val_scheduler_criterion: |
|
- valid |
|
- loss |
|
early_stopping_criterion: |
|
- valid |
|
- loss |
|
- min |
|
best_model_criterion: |
|
- - valid |
|
- eer |
|
- min |
|
keep_nbest_models: 3 |
|
nbest_averaging_interval: 0 |
|
grad_clip: 9999 |
|
grad_clip_type: 2.0 |
|
grad_noise: false |
|
accum_grad: 1 |
|
no_forward_run: false |
|
resume: true |
|
train_dtype: float32 |
|
use_amp: true |
|
log_interval: 100 |
|
use_matplotlib: true |
|
use_tensorboard: true |
|
create_graph_in_tensorboard: false |
|
use_wandb: false |
|
wandb_project: null |
|
wandb_id: null |
|
wandb_entity: null |
|
wandb_name: null |
|
wandb_model_log_interval: -1 |
|
detect_anomaly: false |
|
use_adapter: false |
|
adapter: lora |
|
save_strategy: all |
|
adapter_conf: {} |
|
pretrain_path: null |
|
init_param: [] |
|
ignore_init_mismatch: false |
|
freeze_param: [] |
|
num_iters_per_epoch: null |
|
batch_size: 256 |
|
valid_batch_size: 40 |
|
batch_bins: 1000000 |
|
valid_batch_bins: null |
|
category_sample_size: 10 |
|
train_shape_file: |
|
- exp/spk_stats_16k_sp/train/speech_shape |
|
valid_shape_file: |
|
- exp/spk_stats_16k_sp/valid/speech_shape |
|
batch_type: folded |
|
valid_batch_type: null |
|
fold_length: |
|
- 120000 |
|
sort_in_batch: descending |
|
shuffle_within_batch: false |
|
sort_batch: descending |
|
multiple_iterator: false |
|
chunk_length: 500 |
|
chunk_shift_ratio: 0.5 |
|
num_cache_chunks: 1024 |
|
chunk_excluded_key_prefixes: [] |
|
chunk_default_fs: null |
|
chunk_max_abs_length: null |
|
chunk_discard_short_samples: true |
|
train_data_path_and_name_and_type: |
|
- - dump/raw/cnceleb_train_sp/wav.scp |
|
- speech |
|
- sound |
|
- - dump/raw/cnceleb_train_sp/utt2spk |
|
- spk_labels |
|
- text |
|
valid_data_path_and_name_and_type: |
|
- - dump/raw/cnceleb1_valid/trial.scp |
|
- speech |
|
- sound |
|
- - dump/raw/cnceleb1_valid/trial2.scp |
|
- speech2 |
|
- sound |
|
- - dump/raw/cnceleb1_valid/trial_label |
|
- spk_labels |
|
- text |
|
multi_task_dataset: false |
|
allow_variable_data_keys: false |
|
max_cache_size: 0.0 |
|
max_cache_fd: 32 |
|
allow_multi_rates: false |
|
valid_max_cache_size: null |
|
exclude_weight_decay: false |
|
exclude_weight_decay_conf: {} |
|
optim: sgd |
|
optim_conf: |
|
lr: 0.1 |
|
momentum: 0.9 |
|
weight_decay: 0.0001 |
|
scheduler: exponentialdecaywarmup |
|
scheduler_conf: |
|
max_lr: 0.1 |
|
min_lr: 5.0e-05 |
|
total_steps: 290720 |
|
warmup_steps: 36340 |
|
warm_from_zero: true |
|
init: null |
|
use_preprocessor: true |
|
input_size: null |
|
target_duration: 3.0 |
|
spk2utt: dump/raw/cnceleb_train_sp/spk2utt |
|
spk_num: 8379 |
|
sample_rate: 16000 |
|
num_eval: 10 |
|
rir_scp: '' |
|
model_conf: |
|
extract_feats_in_collect_stats: false |
|
frontend: melspec_torch |
|
frontend_conf: |
|
preemp: true |
|
n_fft: 512 |
|
log: true |
|
win_length: 400 |
|
hop_length: 160 |
|
n_mels: 80 |
|
normalize: mn |
|
specaug: null |
|
specaug_conf: {} |
|
normalize: null |
|
normalize_conf: {} |
|
encoder: resnet |
|
encoder_conf: |
|
resnet_type: resnet221 |
|
pooling: stats |
|
pooling_conf: {} |
|
projector: rawnet3 |
|
projector_conf: |
|
output_size: 256 |
|
preprocessor: spk |
|
preprocessor_conf: |
|
target_duration: 3.0 |
|
sample_rate: 16000 |
|
num_eval: 5 |
|
noise_apply_prob: 0.5 |
|
noise_info: |
|
- - 1.0 |
|
- dump/raw/musan_speech.scp |
|
- - 4 |
|
- 7 |
|
- - 13 |
|
- 20 |
|
- - 1.0 |
|
- dump/raw/musan_noise.scp |
|
- - 1 |
|
- 1 |
|
- - 0 |
|
- 15 |
|
- - 1.0 |
|
- dump/raw/musan_music.scp |
|
- - 1 |
|
- 1 |
|
- - 5 |
|
- 15 |
|
rir_apply_prob: 0.5 |
|
rir_scp: dump/raw/rirs.scp |
|
loss: aamsoftmax_sc_topk |
|
loss_conf: |
|
margin: 0.3 |
|
scale: 30 |
|
K: 3 |
|
mp: 0.06 |
|
k_top: 5 |
|
required: |
|
- output_dir |
|
version: '202402' |
|
distributed: true |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
### Citing ESPnet |
|
|
|
```BibTex |
|
@inproceedings{watanabe2018espnet, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
title={{ESPnet}: End-to-End Speech Processing Toolkit}, |
|
year={2018}, |
|
booktitle={Proceedings of Interspeech}, |
|
pages={2207--2211}, |
|
doi={10.21437/Interspeech.2018-1456}, |
|
url={http://dx.doi.org/10.21437/Interspeech.2018-1456} |
|
} |
|
``` |
|
|
|
or arXiv: |
|
|
|
```bibtex |
|
@misc{watanabe2018espnet, |
|
title={ESPnet: End-to-End Speech Processing Toolkit}, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
year={2018}, |
|
eprint={1804.00015}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|