ESPnet2 SPK model
espnet/voxcelebs12_rawnet3
This model was trained by Jungjee using voxceleb recipe in espnet.
Demo: How to use in ESPnet2
Follow the ESPnet installation instructions if you haven't done that already.
cd espnet
git checkout 0c489a83607efb8e21331a9f01df21aac58c2a88
pip install -e .
cd egs2/voxceleb/spk1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/voxcelebs12_rawnet3
import numpy as np
from espnet2.bin.spk_inference import Speech2Embedding
# from uploaded models
speech2spk_embed = Speech2Embedding.from_pretrained(model_tag="espnet/voxcelebs12_rawnet3")
embedding = speech2spk_embed(np.zeros(16500))
# from checkpoints trained by oneself
speech2spk_embed = Speech2Embedding(model_file="model.pth", train_config="config.yaml")
embedding = speech2spk_embed(np.zeros(32000))
RESULTS
Environments
date: 2023-11-21 12:43:27.293418
- python version: `3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0]`
- espnet version: `espnet 202310`
- pytorch version: `pytorch 2.0.1`
Mean | Std | |
---|---|---|
Target | -0.8015 | 0.1383 |
Non-target | 0.0836 | 0.0836 |
EER(%) | minDCF | |
---|---|---|
0.739 | 0.05818 |
SPK config
expand
config: conf/tuning/train_rawnet3_best_trnVox12_emb192_amp_subcentertopk.yaml
print_config: false
log_level: INFO
drop_last_iter: true
dry_run: false
iterator_type: category
valid_iterator_type: sequence
output_dir: exp/spk_train_rawnet3_best_trnVox12_emb192_amp_subcentertopk_raw_sp
ngpu: 1
seed: 0
num_workers: 6
num_att_plot: 0
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 56599
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: true
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 40
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- eer
- min
keep_nbest_models: 3
nbest_averaging_interval: 0
grad_clip: 9999
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: true
log_interval: 100
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 512
valid_batch_size: 40
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/spk_stats_16k_sp/train/speech_shape
valid_shape_file:
- exp/spk_stats_16k_sp/valid/speech_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 120000
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
train_data_path_and_name_and_type:
- - dump/raw/voxceleb12_devs_sp/wav.scp
- speech
- sound
- - dump/raw/voxceleb12_devs_sp/utt2spk
- spk_labels
- text
valid_data_path_and_name_and_type:
- - dump/raw/voxceleb1_test/trial.scp
- speech
- sound
- - dump/raw/voxceleb1_test/trial2.scp
- speech2
- sound
- - dump/raw/voxceleb1_test/trial_label
- spk_labels
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.001
weight_decay: 5.0e-05
amsgrad: false
scheduler: cosineannealingwarmuprestarts
scheduler_conf:
first_cycle_steps: 71280
cycle_mult: 1.0
max_lr: 0.001
min_lr: 5.0e-06
warmup_steps: 1000
gamma: 0.75
init: null
use_preprocessor: true
input_size: null
target_duration: 3.0
spk2utt: dump/raw/voxceleb12_devs_sp/spk2utt
spk_num: 21615
sample_rate: 16000
num_eval: 10
rir_scp: ''
model_conf:
extract_feats_in_collect_stats: false
frontend: asteroid_frontend
frontend_conf:
sinc_stride: 16
sinc_kernel_size: 251
sinc_filters: 256
preemph_coef: 0.97
log_term: 1.0e-06
specaug: null
specaug_conf: {}
normalize: null
normalize_conf: {}
encoder: rawnet3
encoder_conf:
model_scale: 8
ndim: 1024
output_size: 1536
pooling: chn_attn_stat
pooling_conf: {}
projector: rawnet3
projector_conf:
output_size: 192
preprocessor: spk
preprocessor_conf:
target_duration: 3.0
sample_rate: 16000
num_eval: 5
noise_apply_prob: 0.5
noise_info:
- - 1.0
- dump/raw/musan_speech.scp
- - 4
- 7
- - 13
- 20
- - 1.0
- dump/raw/musan_noise.scp
- - 1
- 1
- - 0
- 15
- - 1.0
- dump/raw/musan_music.scp
- - 1
- 1
- - 5
- 15
rir_apply_prob: 0.5
rir_scp: dump/raw/rirs.scp
loss: aamsoftmax_sc_topk
loss_conf:
margin: 0.3
scale: 30
K: 3
mp: 0.06
k_top: 5
required:
- output_dir
version: '202308'
distributed: true
Citing
@article{jung2024espnet,
title={ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models},
author={Jung, Jee-weon and Zhang, Wangyou and Shi, Jiatong and Aldeneh, Zakaria and Higuchi, Takuya and Theobald, Barry-John and Abdelaziz, Ahmed Hussen and Watanabe, Shinji},
journal={arXiv preprint arXiv:2401.17230},
year={2024}
}
@article{jung2022pushing,
title={Pushing the limits of raw waveform speaker recognition},
author={Jung, Jee-weon and Kim, You Jin and Heo, Hee-Soo and Lee, Bong-Jin and Kwon, Youngki and Chung, Joon Son},
journal={Proc. Interspeech},
year={2022}
}
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proc. Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
- Downloads last month
- 5,636