ethansandbar's picture
run_gemma-2-2b_20250507_202421-intent-cls
69d1c35 verified
metadata
library_name: peft
license: gemma
base_model: google/gemma-2-2b
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: run_gemma-2-2b_20250507_202421
    results: []

run_gemma-2-2b_20250507_202421

This model is a fine-tuned version of google/gemma-2-2b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5589
  • Accuracy: 0.7986
  • Precision General: 0.7985
  • Recall General: 0.9722
  • F1 General: 0.8768
  • Precision Memo: 0.8
  • Recall Memo: 0.3333
  • F1 Memo: 0.4706
  • Precision Album: 0.0
  • Recall Album: 0.0
  • F1 Album: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision General Recall General F1 General Precision Memo Recall Memo F1 Memo Precision Album Recall Album F1 Album
0.8016 1.0 147 1.0285 0.5274 0.816 0.4744 0.6 0.3114 0.7222 0.4351 0.0 0.0 0.0
0.5683 2.0 294 0.6889 0.75 0.8025 0.8884 0.8433 0.5185 0.3889 0.4444 0.0 0.0 0.0
0.5543 3.0 441 0.5514 0.7705 0.7891 0.9395 0.8577 0.6389 0.3194 0.4259 0.0 0.0 0.0
0.4472 4.0 588 0.5336 0.8151 0.8132 0.9721 0.8856 0.8286 0.4028 0.5421 0.0 0.0 0.0
0.4579 5.0 735 0.6379 0.75 0.8114 0.8605 0.8352 0.5312 0.4722 0.5 0.0 0.0 0.0
0.5291 6.0 882 0.6045 0.8048 0.8062 0.9674 0.8795 0.7941 0.375 0.5094 0.0 0.0 0.0
0.4397 7.0 1029 0.5941 0.8116 0.8293 0.9488 0.8850 0.7174 0.4583 0.5593 0.0 0.0 0.0
0.3478 8.0 1176 0.6598 0.8151 0.8061 0.9860 0.8870 0.8966 0.3611 0.5149 0.0 0.0 0.0
0.4765 9.0 1323 0.6486 0.8082 0.8069 0.9721 0.8819 0.8182 0.375 0.5143 0.0 0.0 0.0
0.3421 10.0 1470 0.6713 0.8082 0.8 0.9860 0.8833 0.8889 0.3333 0.4848 0.0 0.0 0.0
0.304 11.0 1617 0.6890 0.8048 0.8038 0.9721 0.88 0.8125 0.3611 0.5 0.0 0.0 0.0
0.3041 12.0 1764 0.6821 0.8014 0.8054 0.9628 0.8771 0.7714 0.375 0.5047 0.0 0.0 0.0
0.3565 13.0 1911 0.6882 0.8048 0.8086 0.9628 0.8790 0.7778 0.3889 0.5185 0.0 0.0 0.0
0.3987 14.0 2058 0.6888 0.8014 0.8054 0.9628 0.8771 0.7714 0.375 0.5047 0.0 0.0 0.0
0.338 15.0 2205 0.6909 0.8014 0.8054 0.9628 0.8771 0.7714 0.375 0.5047 0.0 0.0 0.0

Framework versions

  • PEFT 0.15.0
  • Transformers 4.50.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1