|
--- |
|
base_model: ai-forever/ruGPT-3.5-13B |
|
library_name: peft |
|
license: mit |
|
language: |
|
- ru |
|
tags: |
|
- impruver |
|
- russian |
|
- function call |
|
- lora |
|
pipeline_tag: text-generation |
|
datasets: |
|
- IlyaGusev/ru_turbo_alpaca |
|
- IlyaGusev/ru_turbo_alpaca_evol_instruct |
|
- IlyaGusev/ru_turbo_saiga |
|
- IlyaGusev/ru_sharegpt_cleaned |
|
- IlyaGusev/oasst1_ru_main_branch |
|
- lksy/ru_instruct_gpt4 |
|
--- |
|
|
|
# ruGPT-3.5-13B / Saiga2 |
|
|
|
LoRA адаптер для ruGPT3.5-13B обученный на коллекции датасетов Saiga. |
|
|
|
Конфигурация: https://github.com/EvilFreelancer/impruver/blob/main/configs/ruGPT35_13B_lora.yml |
|
|
|
Адаптер обучался на 1x RTX 4090, для этого потребовалось примерно 18.2Gb VRAM и заняло 16h 58m. |
|
|
|
```yml |
|
output_dir: ./models/ruGPT35_13B_lora |
|
train_path: ./train.ruGPT35_13B.jsonl |
|
val_path: ./val.ruGPT35_13B.jsonl |
|
|
|
datasets: |
|
- name: IlyaGusev/ru_turbo_alpaca |
|
converter: impruver.instruction_to_messages |
|
- name: IlyaGusev/ru_turbo_alpaca_evol_instruct |
|
converter: impruver.instruction_to_messages |
|
- name: IlyaGusev/ru_turbo_saiga |
|
converter: impruver.dialog_to_messages |
|
- name: IlyaGusev/ru_sharegpt_cleaned |
|
converter: impruver.dialog_to_messages |
|
- name: IlyaGusev/oasst1_ru_main_branch |
|
converter: impruver.dialog_to_messages |
|
- name: lksy/ru_instruct_gpt4 |
|
converter: impruver.converters.instruction_to_messages |
|
|
|
model: |
|
class: transformers.AutoModelForCausalLM |
|
name: ai-forever/ruGPT-3.5-13B |
|
load_in_4bit: true |
|
load_in_8bit: false |
|
dtype: bf16 |
|
|
|
lora: |
|
r: 16 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
bias: none |
|
target_modules: [ c_attn ] |
|
task_type: CAUSAL_LM |
|
|
|
tokenizer: |
|
class: transformers.AutoTokenizer |
|
name: ai-forever/ruGPT-3.5-13B |
|
max_tokens_count: 1024 |
|
|
|
trainer: |
|
eval_strategy: steps |
|
save_strategy: steps |
|
eval_steps: 100 |
|
save_steps: 100 |
|
per_device_train_batch_size: 1 |
|
per_device_eval_batch_size: 1 |
|
gradient_accumulation_steps: 128 |
|
logging_steps: 1 |
|
learning_rate: 0.0002 |
|
num_train_epochs: 2 |
|
lr_scheduler_type: cosine |
|
warmup_steps: 16 |
|
optim: adamw_8bit |
|
metric_for_best_model: eval_loss |
|
load_best_model_at_end: true |
|
save_total_limit: 2 |
|
seed: 42 |
|
remove_unused_columns: false |
|
max_grad_norm: 1.0 |
|
weight_decay: 0.08 |
|
torch_compile: false |
|
``` |