SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small on datasets that include Korean query-passage pairs for improved performance on Korean retrieval tasks. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

This model is a lightweight Korean retriever, designed for ease of use and strong performance in practical retrieval tasks. It is ideal for running demos or lightweight applications, offering a good balance between speed and accuracy.

For even higher retrieval performance, we recommend combining it with a reranker. Suggested reranker models:

  • dragonkue/bge-reranker-v2-m3-ko

  • BAAI/bge-reranker-v2-m3

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the πŸ€— Hub
model = SentenceTransformer("dragonkue/multilingual-e5-small-ko")
# Run inference
sentences = [
    'query: λΆν•œκ°€μ‘±λ²• λͺ‡ μ°¨ κ°œμ •μ—μ„œ 이혼판결 ν™•μ • ν›„ 3κ°œμ›” 내에 λ“±λ‘μ‹œμ—λ§Œ μœ νš¨ν•˜λ‹€λŠ” 쑰항을 ν™•μ‹€νžˆ ν–ˆμ„κΉŒ?',
    'passage: 1990년에 μ œμ •λœ λΆν•œ 가쑱법은 μ§€κΈˆκΉŒμ§€ 4μ°¨λ‘€ κ°œμ •λ˜μ–΄ ν˜„μž¬μ— 이λ₯΄κ³  μžˆλ‹€. 1993년에 이루어진 제1μ°¨ κ°œμ •μ€ 주둜 κ·œμ •μ˜ 정확성을 κΈ°ν•˜κΈ° μœ„ν•˜μ—¬ λͺ‡λͺ‡ 쑰문을 μˆ˜μ •ν•œ 것이며, 싀체적인 λ‚΄μš©μ„ λ³΄μ™„ν•œ 것은 μƒμ†μ˜ 승인과 포기기간을 μ„€μ •ν•œ 제52μ‘° 정도라고 ν•  수 μžˆλ‹€. 2004년에 이루어진 제2차에 κ°œμ •μ—μ„œλŠ” 제20쑰제3항을 μ‹ μ„€ν•˜μ—¬ μž¬νŒμƒ ν™•μ •λœ μ΄ν˜ΌνŒκ²°μ„ 3κ°œμ›” 내에 등둝해야 이혼의 효λ ₯이 λ°œμƒν•œλ‹€λŠ” 것을 λͺ…ν™•ν•˜κ²Œ ν•˜μ˜€λ‹€. 2007년에 이루어진 제3μ°¨ κ°œμ •μ—μ„œλŠ” λΆ€λͺ¨μ™€ μžλ…€ 관계 λ˜ν•œ 신뢄등둝기관에 λ“±λ‘ν•œ λ•ŒλΆ€ν„° 법적 효λ ₯이 λ°œμƒν•œλ‹€λŠ” 것을 μ‹ μ„€(제25쑰제2ν•­)ν•˜μ˜€λ‹€. λ˜ν•œ λ―Έμ„±λ…„μž, 노동λŠ₯λ ₯ μ—†λŠ” 자의 λΆ€μ–‘κ³Ό κ΄€λ ¨(제37쑰제2ν•­)ν•˜μ—¬ κΈ°μ‘΄μ—λŠ” β€œλΆ€μ–‘λŠ₯λ ₯이 μžˆλŠ” 가정성원이 없을 κ²½μš°μ—λŠ” λ”°λ‘œ μ‚¬λŠ” λΆ€λͺ¨λ‚˜ μžλ…€, μ‘°λΆ€λͺ¨λ‚˜ μ†μžλ…€, ν˜•μ œμžλ§€κ°€ λΆ€μ–‘ν•œλ‹€β€κ³  κ·œμ •ν•˜κ³  μžˆμ—ˆλ˜ 것을 β€œλΆ€μ–‘λŠ₯λ ₯이 μžˆλŠ” 가정성원이 없을 κ²½μš°μ—λŠ” λ”°λ‘œ μ‚¬λŠ” λΆ€λͺ¨λ‚˜ μžλ…€κ°€ λΆ€μ–‘ν•˜λ©° 그듀이 없을 κ²½μš°μ—λŠ” μ‘°λΆ€λͺ¨λ‚˜ μ†μžλ…€, ν˜•μ œμžλ§€κ°€ λΆ€μ–‘ν•œλ‹€β€λ‘œ κ°œμ •ν•˜μ˜€λ‹€.',
    'passage: ν™˜κ²½λ§ˆν¬ μ œλ„, 인증기쀀 λ³€κ²½μœΌλ‘œ κΈ°μ—…λΆ€λ‹΄ 쀄인닀\nν™˜κ²½λ§ˆν¬ μ œλ„ μ†Œκ°œ\nβ–‘ κ°œμš”\nβ—‹ 동일 μš©λ„μ˜ λ‹€λ₯Έ μ œν’ˆμ— λΉ„ν•΄ β€˜μ œν’ˆμ˜ ν™˜κ²½μ„±*’을 κ°œμ„ ν•œ μ œν’ˆμ— λ‘œκ³ μ™€ μ„€λͺ…을 ν‘œμ‹œν•  수 μžˆλ„λ‘ν•˜λŠ” 인증 μ œλ„\nβ€» μ œν’ˆμ˜ ν™˜κ²½μ„± : μž¬λ£Œμ™€ μ œν’ˆμ„ μ œμ‘°β€€μ†ŒλΉ„ νκΈ°ν•˜λŠ” μ „κ³Όμ •μ—μ„œ μ˜€μ—Όλ¬Όμ§ˆμ΄λ‚˜ μ˜¨μ‹€κ°€μŠ€ 등을 λ°°μΆœν•˜λŠ” 정도 및 μžμ›κ³Ό μ—λ„ˆμ§€λ₯Ό μ†ŒλΉ„ν•˜λŠ” 정도 λ“± ν™˜κ²½μ— λ―ΈμΉ˜λŠ” 영ν–₯λ ₯의 정도(γ€Œν™˜κ²½κΈ°μˆ  및 ν™˜κ²½μ‚°μ—… μ§€μ›λ²•γ€μ œ2쑰제5호)\nβ–‘ 법적근거\nβ—‹ γ€Œν™˜κ²½κΈ°μˆ  및 ν™˜κ²½μ‚°μ—… μ§€μ›λ²•γ€μ œ17μ‘°(ν™˜κ²½ν‘œμ§€μ˜ 인증)\nβ–‘ κ΄€λ ¨ κ΅­μ œν‘œμ€€\nβ—‹ ISO 14024(제1μœ ν˜• ν™˜κ²½λΌλ²¨λ§)\nβ–‘ μ μš©λŒ€μƒ\nβ—‹ 사무기기, κ°€μ „μ œν’ˆ, μƒν™œμš©ν’ˆ, κ±΄μΆ•μžμž¬ λ“± 156개 λŒ€μƒμ œν’ˆκ΅°\nβ–‘ μΈμ¦ν˜„ν™©\nβ—‹ 2,737개 κΈ°μ—…μ˜ 16,647개 μ œν’ˆ(2015.12월말 κΈ°μ€€)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Direct Usage (Transformers)

import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


def average_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]


# Each input text should start with "query: " or "passage: ", even for non-English texts.
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = ["query: λΆν•œκ°€μ‘±λ²• λͺ‡ μ°¨ κ°œμ •μ—μ„œ 이혼판결 ν™•μ • ν›„ 3κ°œμ›” 내에 λ“±λ‘μ‹œμ—λ§Œ μœ νš¨ν•˜λ‹€λŠ” 쑰항을 ν™•μ‹€νžˆ ν–ˆμ„κΉŒ?",
               "passage: 1990년에 μ œμ •λœ λΆν•œ 가쑱법은 μ§€κΈˆκΉŒμ§€ 4μ°¨λ‘€ κ°œμ •λ˜μ–΄ ν˜„μž¬μ— 이λ₯΄κ³  μžˆλ‹€. 1993년에 이루어진 제1μ°¨ κ°œμ •μ€ 주둜 κ·œμ •μ˜ 정확성을 κΈ°ν•˜κΈ° μœ„ν•˜μ—¬ λͺ‡λͺ‡ 쑰문을 μˆ˜μ •ν•œ 것이며, 싀체적인 λ‚΄μš©μ„ λ³΄μ™„ν•œ 것은 μƒμ†μ˜ 승인과 포기기간을 μ„€μ •ν•œ 제52μ‘° 정도라고 ν•  수 μžˆλ‹€. 2004년에 이루어진 제2차에 κ°œμ •μ—μ„œλŠ” 제20쑰제3항을 μ‹ μ„€ν•˜μ—¬ μž¬νŒμƒ ν™•μ •λœ μ΄ν˜ΌνŒκ²°μ„ 3κ°œμ›” 내에 등둝해야 이혼의 효λ ₯이 λ°œμƒν•œλ‹€λŠ” 것을 λͺ…ν™•ν•˜κ²Œ ν•˜μ˜€λ‹€. 2007년에 이루어진 제3μ°¨ κ°œμ •μ—μ„œλŠ” λΆ€λͺ¨μ™€ μžλ…€ 관계 λ˜ν•œ 신뢄등둝기관에 λ“±λ‘ν•œ λ•ŒλΆ€ν„° 법적 효λ ₯이 λ°œμƒν•œλ‹€λŠ” 것을 μ‹ μ„€(제25쑰제2ν•­)ν•˜μ˜€λ‹€. λ˜ν•œ λ―Έμ„±λ…„μž, 노동λŠ₯λ ₯ μ—†λŠ” 자의 λΆ€μ–‘κ³Ό κ΄€λ ¨(제37쑰제2ν•­)ν•˜μ—¬ κΈ°μ‘΄μ—λŠ” β€œλΆ€μ–‘λŠ₯λ ₯이 μžˆλŠ” 가정성원이 없을 κ²½μš°μ—λŠ” λ”°λ‘œ μ‚¬λŠ” λΆ€λͺ¨λ‚˜ μžλ…€, μ‘°λΆ€λͺ¨λ‚˜ μ†μžλ…€, ν˜•μ œμžλ§€κ°€ λΆ€μ–‘ν•œλ‹€β€κ³  κ·œμ •ν•˜κ³  μžˆμ—ˆλ˜ 것을 β€œλΆ€μ–‘λŠ₯λ ₯이 μžˆλŠ” 가정성원이 없을 κ²½μš°μ—λŠ” λ”°λ‘œ μ‚¬λŠ” λΆ€λͺ¨λ‚˜ μžλ…€κ°€ λΆ€μ–‘ν•˜λ©° 그듀이 없을 κ²½μš°μ—λŠ” μ‘°λΆ€λͺ¨λ‚˜ μ†μžλ…€, ν˜•μ œμžλ§€κ°€ λΆ€μ–‘ν•œλ‹€β€λ‘œ κ°œμ •ν•˜μ˜€λ‹€.",
               "passage: ν™˜κ²½λ§ˆν¬ μ œλ„, 인증기쀀 λ³€κ²½μœΌλ‘œ κΈ°μ—…λΆ€λ‹΄ 쀄인닀\nν™˜κ²½λ§ˆν¬ μ œλ„ μ†Œκ°œ\nβ–‘ κ°œμš”\nβ—‹ 동일 μš©λ„μ˜ λ‹€λ₯Έ μ œν’ˆμ— λΉ„ν•΄ β€˜μ œν’ˆμ˜ ν™˜κ²½μ„±*’을 κ°œμ„ ν•œ μ œν’ˆμ— λ‘œκ³ μ™€ μ„€λͺ…을 ν‘œμ‹œν•  수 μžˆλ„λ‘ν•˜λŠ” 인증 μ œλ„\nβ€» μ œν’ˆμ˜ ν™˜κ²½μ„± : μž¬λ£Œμ™€ μ œν’ˆμ„ μ œμ‘°β€€μ†ŒλΉ„ νκΈ°ν•˜λŠ” μ „κ³Όμ •μ—μ„œ μ˜€μ—Όλ¬Όμ§ˆμ΄λ‚˜ μ˜¨μ‹€κ°€μŠ€ 등을 λ°°μΆœν•˜λŠ” 정도 및 μžμ›κ³Ό μ—λ„ˆμ§€λ₯Ό μ†ŒλΉ„ν•˜λŠ” 정도 λ“± ν™˜κ²½μ— λ―ΈμΉ˜λŠ” 영ν–₯λ ₯의 정도(γ€Œν™˜κ²½κΈ°μˆ  및 ν™˜κ²½μ‚°μ—… μ§€μ›λ²•γ€μ œ2쑰제5호)\nβ–‘ 법적근거\nβ—‹ γ€Œν™˜κ²½κΈ°μˆ  및 ν™˜κ²½μ‚°μ—… μ§€μ›λ²•γ€μ œ17μ‘°(ν™˜κ²½ν‘œμ§€μ˜ 인증)\nβ–‘ κ΄€λ ¨ κ΅­μ œν‘œμ€€\nβ—‹ ISO 14024(제1μœ ν˜• ν™˜κ²½λΌλ²¨λ§)\nβ–‘ μ μš©λŒ€μƒ\nβ—‹ 사무기기, κ°€μ „μ œν’ˆ, μƒν™œμš©ν’ˆ, κ±΄μΆ•μžμž¬ λ“± 156개 λŒ€μƒμ œν’ˆκ΅°\nβ–‘ μΈμ¦ν˜„ν™©\nβ—‹ 2,737개 κΈ°μ—…μ˜ 16,647개 μ œν’ˆ(2015.12월말 κΈ°μ€€)"]

tokenizer = AutoTokenizer.from_pretrained('dragonkue/multilingual-e5-small-ko')
model = AutoModel.from_pretrained('dragonkue/multilingual-e5-small-ko')

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T)
print(scores.tolist())

Evaluation

Korean Retrieval Benchmark

  • Ko-StrategyQA: A Korean ODQA multi-hop retrieval dataset, translated from StrategyQA.
  • AutoRAGRetrieval: A Korean document retrieval dataset constructed by parsing PDFs from five domains: finance, public, medical, legal, and commerce.
  • MIRACLRetrieval: A Korean document retrieval dataset based on Wikipedia.
  • PublicHealthQA: A retrieval dataset focused on medical and public health domains in Korean.
  • BelebeleRetrieval: A Korean document retrieval dataset based on FLORES-200.
  • MrTidyRetrieval: A Wikipedia-based Korean document retrieval dataset.
  • XPQARetrieval: A cross-domain Korean document retrieval dataset.

Metrics

  • Standard metric : NDCG@10

Information Retrieval

Model Size(M) Average XPQARetrieval PublicHealthQA MIRACLRetrieval Ko-StrategyQA BelebeleRetrieval AutoRAGRetrieval MrTidyRetrieval
BAAI/bge-m3 560 0.724169 0.36075 0.80412 0.70146 0.79405 0.93164 0.83008 0.64708
Snowflake/snowflake-arctic-embed-l-v2.0 560 0.724104 0.43018 0.81679 0.66077 0.80455 0.9271 0.83863 0.59071
intfloat/multilingual-e5-large 560 0.721607 0.3571 0.82534 0.66486 0.80348 0.94499 0.81337 0.64211
intfloat/multilingual-e5-base 278 0.689429 0.3607 0.77203 0.6227 0.76355 0.92868 0.79752 0.58082
dragonkue/multilingual-e5-small-ko 118 0.688819 0.34871 0.79729 0.61113 0.76173 0.9297 0.86184 0.51133
exp-models/dragonkue-KoEn-E5-Tiny 37 0.687496 0.34735 0.7925 0.6143 0.75978 0.93018 0.86503 0.50333
intfloat/multilingual-e5-small 118 0.670906 0.33003 0.73668 0.61238 0.75157 0.90531 0.80068 0.55969
ibm-granite/granite-embedding-278m-multilingual 278 0.616466 0.23058 0.77668 0.59216 0.71762 0.83231 0.70226 0.46365
ibm-granite/granite-embedding-107m-multilingual 107 0.599759 0.23058 0.73209 0.58413 0.70531 0.82063 0.68243 0.44314
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 118 0.409766 0.21345 0.67409 0.25676 0.45903 0.71491 0.42296 0.12716

Performance Comparison by Model Size (Based on Average NDCG@10)

Training Details

Training Datasets

This model was fine-tuned on the same dataset used in dragonkue/snowflake-arctic-embed-l-v2.0-ko, which consists of Korean query-passage pairs. The training objective was to improve retrieval performance specifically for Korean-language tasks.

Training Methods

Following the training approach used in dragonkue/snowflake-arctic-embed-l-v2.0-ko, this model constructs in-batch negatives based on clustered passages. In addition, we introduce GISTEmbedLoss with a configurable margin.

πŸ“ˆ Margin-based Training Results

  • Using the standard MNR (Multiple Negatives Ranking) loss alone resulted in decreased performance.

  • The original GISTEmbedLoss (without margin) yielded modest improvements of around +0.8 NDCG@10.

  • Applying a margin led to performance gains of up to +1.5 NDCG@10.

  • This indicates that simply tuning the margin value can lead to up to 2x improvement, showing strong sensitivity and effectiveness of margin scaling.

This margin-based approach extends the idea proposed in the NV-Retriever paper, which originally filtered false negatives during hard negative sampling. We adapt this to in-batch negatives, treating false negatives as dynamic samples guided by margin-based filtering.

The sentence-transformers library now supports GISTEmbedLoss with margin configuration, making it easy to integrate into any training pipeline.

You can install the latest version with:

pip install -U sentence-transformers

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 20000
  • per_device_eval_batch_size: 4096
  • learning_rate: 0.00025
  • num_train_epochs: 3
  • warmup_ratio: 0.05
  • fp16: True
  • dataloader_drop_last: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 20000
  • per_device_eval_batch_size: 4096
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.00025
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 3.5.1
  • Tokenizers: 0.21.1

FAQ

1. Do I need to add the prefix "query: " and "passage: " to input texts?

Yes, this is how the model is trained, otherwise you will see a performance degradation.

Here are some rules of thumb:

Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.

Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval.

Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.

2. Why does the cosine similarity scores distribute around 0.7 to 1.0?

This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.

For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue.

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

Base Model

@article{wang2024multilingual,
  title={Multilingual E5 Text Embeddings: A Technical Report},
  author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
  journal={arXiv preprint arXiv:2402.05672},
  year={2024}
}

NV-Retriever: Improving text embedding models with effective hard-negative mining

@article{moreira2024nvretriever,
  title     = {NV-Retriever: Improving text embedding models with effective hard-negative mining},
  author    = {Moreira, Gabriel de Souza P. and Osmulski, Radek and Xu, Mengyao and Ak, Ronay and Schifferer, Benedikt and Oldridge, Even},
  journal   = {arXiv preprint arXiv:2407.15831},
  year      = {2024},
  url       = {https://arxiv.org/abs/2407.15831},
  doi       = {10.48550/arXiv.2407.15831}
}

Limitations

Long texts will be truncated to at most 512 tokens.

Downloads last month
0
Safetensors
Model size
37.5M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for exp-models/dragonkue-KoEn-E5-Tiny

Quantized
(2)
this model