library_name: transformers | |
language: | |
- ko | |
license: apache-2.0 | |
base_model: monologg/koelectra-base-v3-discriminator | |
tags: | |
- text-classification | |
- KoELECTRA | |
- Korean-NLP | |
- topic-classification | |
- news-classification | |
- generated_from_trainer | |
metrics: | |
- accuracy | |
- precision | |
- recall | |
- f1 | |
model-index: | |
- name: ynat-model | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# ynat-model | |
This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue-ynat dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.4407 | |
- Accuracy: 0.8531 | |
- Precision: 0.8437 | |
- Recall: 0.8667 | |
- F1: 0.8540 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 64 | |
- eval_batch_size: 64 | |
- seed: 42 | |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | |
| 0.2213 | 1.0 | 714 | 0.5144 | 0.8387 | 0.8313 | 0.8602 | 0.8430 | | |
| 0.2323 | 2.0 | 1428 | 0.4407 | 0.8531 | 0.8437 | 0.8667 | 0.8540 | | |
| 0.156 | 3.0 | 2142 | 0.5019 | 0.8499 | 0.8370 | 0.8657 | 0.8503 | | |
### Framework versions | |
- Transformers 4.52.4 | |
- Pytorch 2.6.0+cu124 | |
- Datasets 3.6.0 | |
- Tokenizers 0.21.1 | |