git-base-appliances

This model is a fine-tuned version of microsoft/git-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4281
  • Wer Score: 3.2039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Score
84.9149 3.6893 100 2.9324 3.8749
39.5513 7.3991 200 2.6633 2.6427
28.5436 11.1088 300 2.7566 3.0925
20.9713 14.7982 400 2.8737 3.2221
15.2719 18.5079 500 2.9953 2.9620
11.4351 22.2177 600 3.1084 3.0657
8.6091 25.9070 700 3.1823 3.1642
6.4907 29.6168 800 3.2530 3.0930
5.0524 33.3265 900 3.3025 3.1223
4.0674 37.0363 1000 3.3509 3.1089
3.3508 40.7256 1100 3.3843 3.1288
2.8752 44.4354 1200 3.4132 3.1570
2.5338 48.1451 1300 3.4281 3.2039

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
67
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for faluradu/git-base-appliances

Base model

microsoft/git-base
Finetuned
(109)
this model