BGE m3 Uzbek Legal Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: uz
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("fitlemon/bge-m3-uz-legal-matryoshka")
# Run inference
sentences = [
    'Mehnatni huquqiy jihatdan tartibga solishning o‘ziga xos xususiyatlari qaysi bo‘limda ko‘rsatilgan?',
    'Noqulay tabiiy-iqlim sharoitlaridagi ish uchun mehnatga haq to‘lash koeffitsiyenti ayrim \nhududlardagi mehnat sharoitlarining xususiyatlari inobatga olingan holda xodimlarga to‘lanadigan \nkompensatsiya xususiyatiga ega bo‘lgan ustama turidir. Koeffitsiyentlarning eng kam miqdorlari va \nularni qo‘llash tartibi O‘zbekiston Respublikasi Vazirlar Mahkamasi tomonidan belgilanadi. \n28-bob. Xodim mehnatining xususiyati bilan bog‘liq bo‘lgan mehnatni huquqiy jihatdan \ntartibga solishning o‘ziga xos xususiyatlari  \n1-§. Tashkilot rahbarining, uning o‘rinbosarlarining, tashkilot bosh buxgalterining va \ntashkilot alohida bo‘linmasi rahbarining mehnatini huquqiy jihatdan tartibga solishning \no‘ziga xos xususiyatlari',
    'muddat doirasida mehnat nizosini ko‘rib  chiqish haqida takroran ariza berish huquqidan mahrum \netmaydi. Komissiyaning arizani ko‘rib chiqishdan olib tashlash to‘g‘risidagi qarori arizani ko‘rib \nchiqishdan olib tashlash sababi albatta ko‘rsatilgan holda xodimga yozma shaklda yetkaziladi.  \nXodim mehnat nizosini mehnat nizolari bo‘yicha komissiyada ko‘rib chiqishning har qanday \nbosqichida ushbu nizoni tugatishga haqlidir. \nO‘n besh yoshdan o‘n olti yoshgacha bo‘lgan xodimlarning yakka tartibdagi mehnat nizolari \nota-onasidan birining yoki vasiysining ishtirokida mehnat nizolari bo‘yicha komissiyada ko‘rib \nchiqiladi. \nXodim, kasaba uyushmasi qo‘mitasi mehnat nizosini ko‘rib chiqishda ishtirok etish uchun \nadvokatni, ekspertni yoki boshqa uchinchi shaxsni taklif etish huquqiga ega. \nMehnat nizolari bo‘yicha komissiya o‘z majlisiga guvohlarni chaqirish, mutaxassislarni \ntaklif etish huquqiga ega. \nMehnat nizolari bo‘yicha komissiyaning talabiga binoan ish beruvchi (uning vakillari) \nkomissiyaga zarur bo‘lgan hujjatlarni komissiya tomonida n belgilangan muddatda taqdim etishi \nshart. \nMehnat nizolari bo‘yicha komissiyaning majlisi, agar har bir tarafdan komissiya a’zolarining \nkamida yarmi hozir bo‘lsa, vakolatli hisoblanadi. \nMehnat nizolari bo‘yicha komissiya majlisida ish beruvchining va kasa ba uyushmasi \nqo‘mitasining teng miqdordagi vakillari ishtirok etishi kerak. \nMehnat nizolari bo‘yicha komissiyaning vakolatga ega bo‘lmagan tarkibi tomonidan qabul \nqilingan qaror g‘ayriqonuniydir. \nMehnat nizolari bo‘yicha komissiyaning har bir majlisida rai sning vazifalari ish \nberuvchining va kasaba uyushmasi qo‘mitasining vakillari tomonidan navbatma -navbat bajariladi. \nBunda raisning va kotibning vazifalari ayni bir majlisning o‘zida bir taraf vakillari tomonidan \nbajarilishi mumkin emas.  \nMehnat nizolari bo‘yicha komissiyaning birinchi majlisida komissiya a’zolarining (xodimlar',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.4004 0.3909 0.3833 0.3681 0.3397
cosine_accuracy@3 0.6774 0.6698 0.6622 0.6414 0.6148
cosine_accuracy@5 0.7875 0.7685 0.7628 0.7457 0.7173
cosine_accuracy@10 0.8634 0.8577 0.8444 0.8425 0.8235
cosine_precision@1 0.4004 0.3909 0.3833 0.3681 0.3397
cosine_precision@3 0.2258 0.2233 0.2207 0.2138 0.2049
cosine_precision@5 0.1575 0.1537 0.1526 0.1491 0.1435
cosine_precision@10 0.0863 0.0858 0.0844 0.0843 0.0824
cosine_recall@1 0.4004 0.3909 0.3833 0.3681 0.3397
cosine_recall@3 0.6774 0.6698 0.6622 0.6414 0.6148
cosine_recall@5 0.7875 0.7685 0.7628 0.7457 0.7173
cosine_recall@10 0.8634 0.8577 0.8444 0.8425 0.8235
cosine_ndcg@10 0.636 0.6282 0.616 0.6047 0.5803
cosine_mrr@10 0.5627 0.5544 0.5425 0.5285 0.5026
cosine_map@100 0.5689 0.561 0.5497 0.5353 0.5108

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 4,737 training samples
  • Columns: question and chunk
  • Approximate statistics based on the first 1000 samples:
    question chunk
    type string string
    details
    • min: 9 tokens
    • mean: 22.61 tokens
    • max: 50 tokens
    • min: 30 tokens
    • mean: 268.2 tokens
    • max: 520 tokens
  • Samples:
    question chunk
    Xodim mehnat shartnomasining nusxasini olganligini qanday tasdiqlaydi? Mehnat shartnomasi bir xil kuchga ega bo‘lgan kamida ikki nusxada yozma shaklda tuzilib,
    ularning har biri taraflar tomonidan imzolanadi.
    Mehnat shartnomasining har bir nusxasi xodimning va ishga qabul qilish huquqiga ega
    bo‘lgan mansabdor shaxsning imzolari bilan mustahkamlanadi.
    Ish beruvchida muhr mav jud bo‘lgan taqdirda mansabdor shaxsning mehnat
    shartnomasining barcha nusxalaridagi imzosi muhr bilan tasdiqlanadi.
    Mehnat shartnomasining bir nusxasi xodimga beriladi, boshqasi (boshqalari) ish beruvchida
    saqlanadi. Mehnat shartnomasining nusxasi xodim t omonidan olinganligi ish beruvchida
    saqlanadigan mehnat shartnomasi nusxasidagi xodim mehnat shartnomasining nusxasini olganligi
    to‘g‘risidagi alohida imzosi bilan tasdiqlanadi.
    Mehnat shartnomasida shartnomaning ushbu Kodeksning 107-moddasida nazarda tutilgan
    rekvizitlari ko‘rsatiladi.
    Ish beruvchilar va xodimlarga mehnat shartnomalarini tuzishda amaliy yordam ko‘rsatish
    maqsadida O‘zbekiston Respublikasi Vazirlar Mahk...
    Vaqtincha xizmat safariga yuborilgan xodimning mehnatga haq to‘lash shartlari qanday bo'lishi kerak? konsullik muassasalariga diplomatik, konsullik, ma’muriy -texnik lavozimlarga yoki xizmat
    ko‘rsatuvchi xodimlar lavozimlariga vaqtincha xizmat safariga yuborish tartibi va muddatlari
    qonunchilikda belgilanadi.
    Xodim boshqa ish beruvchiga v aqtincha xizmat safariga yuborilganda xodimning roziligi
    bilan uning mehnat vazifasi o‘zgartirilishi mumkin.
    Vaqtincha xizmat safariga yuborilganda mehnatga haq to‘lash xodim vaqtincha xizmat
    safariga yuborilgan ish beruvchi tomonidan amalga oshiriladi. Us hbu ish beruvchi to‘lovga
    qobiliyatsiz bo‘lgan taqdirda, bajarilgan ish uchun haq to‘lash majburiyati xodim vaqtincha xizmat
    safariga yuborilgan ish beruvchiga nisbatan regress da’vo qo‘zg‘atish huquqi bilan xodimni vaqtincha
    xizmat safariga yuborgan ish beruvchi zimmasiga yuklatiladi.
    Agar yangi ish joyidagi mehnatga haq to‘lash shartlari yoki dam olish vaqti xodim uni
    vaqtincha xizmat safariga yuborgan ish beruvchida foydalanganidan farq qilsa, xodimga nisbatan
    qulayroq shartlar qo‘ll...
    O‘zbekiston Respublikasi hududida o‘rindoshlik shartlari asosida mehnat shartnomalari qanday shartlar bilan tuzilishi mumkin? Mehnat faoliyatini amalga oshirish maqsadida O‘zbekiston Respublikasi hududiga qonuniy
    ravishda kirib kelgan chet el fuqarolari O‘zbekiston Respublikasi hududida mehnat faoliyatini
    O‘zbekiston Respublikasi hududida mehnat faoliyatini amalga oshirish huquqiga doir tasdiqnoma
    asosidagina amalga oshirish huquqiga ega, bundan qonunchilikda belgilangan hollar mustasno.
    Ish beruvchi O‘zbekiston Respublikasi hududiga qonuniy ravishda kirib kelga n chet el
    fuqarolari bilan mehnat shartnomalarini tuzishga ularda O‘zbekiston Respublikasi hududida mehnat
    faoliyatini amalga oshirish huquqiga doir tasdiqnoma mavjud bo‘lgan taqdirdagina haqli, bundan
    qonunchilikda nazarda tutilgan hollar mustasno.
    Mehnat faoliyatini amalga oshirish uchun O‘zbekiston Respublikasi hududiga qonuniy
    ravishda kirib kelgan chet el fuqarolari bilan o‘rindoshlik shartlari asosidagi mehnat shartnomalari
    faqat ular tomonidan O‘zbekiston Respublikasi hududida mehnat faoliyatini amal ga oshirish
    huquqiga doir alohida...
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • learning_rate: 2e-05
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.0042 10 0.6467 - - - - -
0.0084 20 0.4713 - - - - -
0.0127 30 0.3406 - - - - -
0.0169 40 0.7501 - - - - -
0.0211 50 0.2003 - - - - -
0.0253 60 0.5921 - - - - -
0.0295 70 0.3318 - - - - -
0.0338 80 0.5024 - - - - -
0.0380 90 1.374 - - - - -
0.0422 100 0.1596 - - - - -
0.0464 110 0.4551 - - - - -
0.0507 120 0.2401 - - - - -
0.0549 130 0.2713 - - - - -
0.0591 140 0.0518 - - - - -
0.0633 150 0.152 - - - - -
0.0675 160 0.4502 - - - - -
0.0718 170 0.0451 - - - - -
0.0760 180 0.3868 - - - - -
0.0802 190 1.4533 - - - - -
0.0844 200 0.2311 - - - - -
0.0886 210 0.1505 - - - - -
0.0929 220 0.5153 - - - - -
0.0971 230 0.0066 - - - - -
0.1013 240 0.3033 - - - - -
0.1055 250 0.539 - - - - -
0.1098 260 0.3824 - - - - -
0.1140 270 0.0086 - - - - -
0.1182 280 0.1475 - - - - -
0.1224 290 0.0798 - - - - -
0.1266 300 0.0117 - - - - -
0.1309 310 0.2274 - - - - -
0.1351 320 0.4655 - - - - -
0.1393 330 0.1914 - - - - -
0.1435 340 0.1235 - - - - -
0.1477 350 0.0194 - - - - -
0.1520 360 0.0134 - - - - -
0.1562 370 0.0402 - - - - -
0.1604 380 0.7122 - - - - -
0.1646 390 0.0028 - - - - -
0.1688 400 0.013 - - - - -
0.1731 410 0.1177 - - - - -
0.1773 420 0.1789 - - - - -
0.1815 430 0.2352 - - - - -
0.1857 440 0.0115 - - - - -
0.1900 450 0.0513 - - - - -
0.1942 460 0.1091 - - - - -
0.1984 470 0.0272 - - - - -
0.2026 480 0.0265 - - - - -
0.2068 490 0.3917 - - - - -
0.2111 500 0.3685 - - - - -
0.2153 510 0.0767 - - - - -
0.2195 520 0.3884 - - - - -
0.2237 530 0.0422 - - - - -
0.2279 540 0.0709 - - - - -
0.2322 550 0.0811 - - - - -
0.2364 560 0.2405 - - - - -
0.2406 570 0.1962 - - - - -
0.2448 580 0.1972 - - - - -
0.2491 590 0.3326 - - - - -
0.2533 600 0.2679 - - - - -
0.2575 610 0.2426 - - - - -
0.2617 620 0.655 - - - - -
0.2659 630 0.2496 - - - - -
0.2702 640 0.0524 - - - - -
0.2744 650 0.1944 - - - - -
0.2786 660 0.057 - - - - -
0.2828 670 0.006 - - - - -
0.2870 680 0.3044 - - - - -
0.2913 690 0.2551 - - - - -
0.2955 700 0.2929 - - - - -
0.2997 710 0.1308 - - - - -
0.3039 720 0.5529 - - - - -
0.3081 730 0.0081 - - - - -
0.3124 740 0.0438 - - - - -
0.3166 750 1.6156 - - - - -
0.3208 760 0.1668 - - - - -
0.3250 770 0.0838 - - - - -
0.3293 780 0.0366 - - - - -
0.3335 790 1.1284 - - - - -
0.3377 800 0.3464 - - - - -
0.3419 810 0.0044 - - - - -
0.3461 820 0.0104 - - - - -
0.3504 830 0.0133 - - - - -
0.3546 840 0.5148 - - - - -
0.3588 850 0.0241 - - - - -
0.3630 860 0.0201 - - - - -
0.3672 870 0.3333 - - - - -
0.3715 880 0.8131 - - - - -
0.3757 890 0.0188 - - - - -
0.3799 900 0.0085 - - - - -
0.3841 910 0.0025 - - - - -
0.3883 920 0.0828 - - - - -
0.3926 930 0.2471 - - - - -
0.3968 940 0.2424 - - - - -
0.4010 950 0.5009 - - - - -
0.4052 960 0.005 - - - - -
0.4095 970 0.2153 - - - - -
0.4137 980 0.4314 - - - - -
0.4179 990 0.0031 - - - - -
0.4221 1000 0.1249 - - - - -
0.4263 1010 0.5784 - - - - -
0.4306 1020 1.133 - - - - -
0.4348 1030 0.083 - - - - -
0.4390 1040 0.1111 - - - - -
0.4432 1050 0.8513 - - - - -
0.4474 1060 0.8548 - - - - -
0.4517 1070 0.3107 - - - - -
0.4559 1080 0.315 - - - - -
0.4601 1090 0.2245 - - - - -
0.4643 1100 0.2013 - - - - -
0.4686 1110 0.0249 - - - - -
0.4728 1120 1.0133 - - - - -
0.4770 1130 0.002 - - - - -
0.4812 1140 0.0222 - - - - -
0.4854 1150 0.2644 - - - - -
0.4897 1160 0.5054 - - - - -
0.4939 1170 0.0143 - - - - -
0.4981 1180 0.1079 - - - - -
0.5023 1190 0.5892 - - - - -
0.5065 1200 0.068 - - - - -
0.5108 1210 0.0099 - - - - -
0.5150 1220 0.1315 - - - - -
0.5192 1230 0.0041 - - - - -
0.5234 1240 0.3742 - - - - -
0.5276 1250 0.031 - - - - -
0.5319 1260 0.7244 - - - - -
0.5361 1270 0.0717 - - - - -
0.5403 1280 0.1792 - - - - -
0.5445 1290 0.6793 - - - - -
0.5488 1300 0.0335 - - - - -
0.5530 1310 0.0033 - - - - -
0.5572 1320 0.1434 - - - - -
0.5614 1330 0.6321 - - - - -
0.5656 1340 0.2166 - - - - -
0.5699 1350 0.0076 - - - - -
0.5741 1360 1.987 - - - - -
0.5783 1370 0.1667 - - - - -
0.5825 1380 0.2018 - - - - -
0.5867 1390 0.2529 - - - - -
0.5910 1400 0.0292 - - - - -
0.5952 1410 0.6604 - - - - -
0.5994 1420 0.0416 - - - - -
0.6036 1430 0.9616 - - - - -
0.6079 1440 0.1556 - - - - -
0.6121 1450 0.0313 - - - - -
0.6163 1460 0.2537 - - - - -
0.6205 1470 0.0566 - - - - -
0.6247 1480 0.2276 - - - - -
0.6290 1490 0.1491 - - - - -
0.6332 1500 0.0643 - - - - -
0.6374 1510 0.1173 - - - - -
0.6416 1520 0.0009 - - - - -
0.6458 1530 0.2167 - - - - -
0.6501 1540 0.6859 - - - - -
0.6543 1550 0.1958 - - - - -
0.6585 1560 0.3771 - - - - -
0.6627 1570 1.8055 - - - - -
0.6669 1580 1.5135 - - - - -
0.6712 1590 0.5297 - - - - -
0.6754 1600 0.8258 - - - - -
0.6796 1610 0.0032 - - - - -
0.6838 1620 1.3306 - - - - -
0.6881 1630 0.0684 - - - - -
0.6923 1640 0.6102 - - - - -
0.6965 1650 0.2239 - - - - -
0.7007 1660 0.0645 - - - - -
0.7049 1670 0.8427 - - - - -
0.7092 1680 0.3595 - - - - -
0.7134 1690 0.0046 - - - - -
0.7176 1700 0.0075 - - - - -
0.7218 1710 0.2205 - - - - -
0.7260 1720 0.9048 - - - - -
0.7303 1730 1.4343 - - - - -
0.7345 1740 0.0031 - - - - -
0.7387 1750 0.5003 - - - - -
0.7429 1760 0.6662 - - - - -
0.7472 1770 0.0749 - - - - -
0.7514 1780 0.299 - - - - -
0.7556 1790 0.6198 - - - - -
0.7598 1800 0.0025 - - - - -
0.7640 1810 0.5758 - - - - -
0.7683 1820 0.0323 - - - - -
0.7725 1830 0.4116 - - - - -
0.7767 1840 0.1024 - - - - -
0.7809 1850 0.1835 - - - - -
0.7851 1860 0.0496 - - - - -
0.7894 1870 0.03 - - - - -
0.7936 1880 0.0479 - - - - -
0.7978 1890 0.0286 - - - - -
0.8020 1900 0.3105 - - - - -
0.8062 1910 0.0043 - - - - -
0.8105 1920 1.0067 - - - - -
0.8147 1930 0.001 - - - - -
0.8189 1940 3.5781 - - - - -
0.8231 1950 2.3497 - - - - -
0.8274 1960 0.6981 - - - - -
0.8316 1970 0.021 - - - - -
0.8358 1980 0.2338 - - - - -
0.8400 1990 0.0016 - - - - -
0.8442 2000 0.2277 - - - - -
0.8485 2010 0.4539 - - - - -
0.8527 2020 0.008 - - - - -
0.8569 2030 0.1729 - - - - -
0.8611 2040 0.0088 - - - - -
0.8653 2050 0.1989 - - - - -
0.8696 2060 0.0438 - - - - -
0.8738 2070 0.2272 - - - - -
0.8780 2080 0.605 - - - - -
0.8822 2090 0.2498 - - - - -
0.8864 2100 1.2537 - - - - -
0.8907 2110 0.0075 - - - - -
0.8949 2120 0.0785 - - - - -
0.8991 2130 1.0891 - - - - -
0.9033 2140 0.2194 - - - - -
0.9076 2150 0.0776 - - - - -
0.9118 2160 0.1537 - - - - -
0.9160 2170 0.0121 - - - - -
0.9202 2180 0.8465 - - - - -
0.9244 2190 0.5243 - - - - -
0.9287 2200 0.8904 - - - - -
0.9329 2210 0.0052 - - - - -
0.9371 2220 0.643 - - - - -
0.9413 2230 0.0044 - - - - -
0.9455 2240 0.8662 - - - - -
0.9498 2250 0.4391 - - - - -
0.9540 2260 0.0863 - - - - -
0.9582 2270 0.0672 - - - - -
0.9624 2280 0.1398 - - - - -
0.9667 2290 0.0008 - - - - -
0.9709 2300 0.0005 - - - - -
0.9751 2310 0.0102 - - - - -
0.9793 2320 0.0381 - - - - -
0.9835 2330 0.0267 - - - - -
0.9878 2340 0.1947 - - - - -
0.9920 2350 0.0553 - - - - -
0.9962 2360 0.2564 - - - - -
1.0 2369 - 0.5880 0.5825 0.5678 0.5467 0.5258
1.0004 2370 0.0003 - - - - -
1.0046 2380 0.4543 - - - - -
1.0089 2390 0.2762 - - - - -
1.0131 2400 0.0234 - - - - -
1.0173 2410 0.0061 - - - - -
1.0215 2420 0.2479 - - - - -
1.0257 2430 2.7238 - - - - -
1.0300 2440 0.0296 - - - - -
1.0342 2450 0.0066 - - - - -
1.0384 2460 0.1021 - - - - -
1.0426 2470 0.0253 - - - - -
1.0469 2480 0.1504 - - - - -
1.0511 2490 0.2184 - - - - -
1.0553 2500 0.0208 - - - - -
1.0595 2510 0.0008 - - - - -
1.0637 2520 0.2058 - - - - -
1.0680 2530 0.0361 - - - - -
1.0722 2540 0.2518 - - - - -
1.0764 2550 0.245 - - - - -
1.0806 2560 1.4324 - - - - -
1.0848 2570 0.3389 - - - - -
1.0891 2580 0.2088 - - - - -
1.0933 2590 0.4574 - - - - -
1.0975 2600 0.0001 - - - - -
1.1017 2610 0.6055 - - - - -
1.1060 2620 0.4637 - - - - -
1.1102 2630 0.0647 - - - - -
1.1144 2640 0.0244 - - - - -
1.1186 2650 0.0928 - - - - -
1.1228 2660 0.1607 - - - - -
1.1271 2670 0.0324 - - - - -
1.1313 2680 0.657 - - - - -
1.1355 2690 0.007 - - - - -
1.1397 2700 0.0765 - - - - -
1.1439 2710 0.6131 - - - - -
1.1482 2720 0.0354 - - - - -
1.1524 2730 0.0508 - - - - -
1.1566 2740 0.0001 - - - - -
1.1608 2750 0.0303 - - - - -
1.1650 2760 0.0002 - - - - -
1.1693 2770 0.3583 - - - - -
1.1735 2780 0.0052 - - - - -
1.1777 2790 0.6819 - - - - -
1.1819 2800 0.0001 - - - - -
1.1862 2810 0.0002 - - - - -
1.1904 2820 0.002 - - - - -
1.1946 2830 0.0065 - - - - -
1.1988 2840 0.0038 - - - - -
1.2030 2850 0.001 - - - - -
1.2073 2860 0.0003 - - - - -
1.2115 2870 0.0229 - - - - -
1.2157 2880 0.0154 - - - - -
1.2199 2890 0.0121 - - - - -
1.2241 2900 0.0014 - - - - -
1.2284 2910 0.0002 - - - - -
1.2326 2920 0.0001 - - - - -
1.2368 2930 0.0011 - - - - -
1.2410 2940 0.0176 - - - - -
1.2453 2950 0.0179 - - - - -
1.2495 2960 0.0422 - - - - -
1.2537 2970 0.0 - - - - -
1.2579 2980 0.0672 - - - - -
1.2621 2990 0.2377 - - - - -
1.2664 3000 0.021 - - - - -
1.2706 3010 1.7359 - - - - -
1.2748 3020 0.0001 - - - - -
1.2790 3030 0.0004 - - - - -
1.2832 3040 0.0013 - - - - -
1.2875 3050 0.1029 - - - - -
1.2917 3060 0.001 - - - - -
1.2959 3070 0.0528 - - - - -
1.3001 3080 0.0009 - - - - -
1.3043 3090 0.6658 - - - - -
1.3086 3100 0.0007 - - - - -
1.3128 3110 0.0077 - - - - -
1.3170 3120 0.0294 - - - - -
1.3212 3130 0.0157 - - - - -
1.3255 3140 0.0021 - - - - -
1.3297 3150 0.0002 - - - - -
1.3339 3160 0.0257 - - - - -
1.3381 3170 0.0195 - - - - -
1.3423 3180 0.0 - - - - -
1.3466 3190 0.0001 - - - - -
1.3508 3200 0.0002 - - - - -
1.3550 3210 0.0134 - - - - -
1.3592 3220 0.0014 - - - - -
1.3634 3230 0.0014 - - - - -
1.3677 3240 0.0026 - - - - -
1.3719 3250 0.0072 - - - - -
1.3761 3260 0.0008 - - - - -
1.3803 3270 0.0007 - - - - -
1.3846 3280 0.002 - - - - -
1.3888 3290 0.0022 - - - - -
1.3930 3300 0.062 - - - - -
1.3972 3310 0.0323 - - - - -
1.4014 3320 0.0001 - - - - -
1.4057 3330 0.0004 - - - - -
1.4099 3340 0.0014 - - - - -
1.4141 3350 0.0003 - - - - -
1.4183 3360 0.0 - - - - -
1.4225 3370 0.0119 - - - - -
1.4268 3380 0.1617 - - - - -
1.4310 3390 0.0582 - - - - -
1.4352 3400 0.1009 - - - - -
1.4394 3410 0.0356 - - - - -
1.4436 3420 0.0084 - - - - -
1.4479 3430 0.0041 - - - - -
1.4521 3440 0.4268 - - - - -
1.4563 3450 0.0309 - - - - -
1.4605 3460 0.0005 - - - - -
1.4648 3470 0.0514 - - - - -
1.4690 3480 0.0008 - - - - -
1.4732 3490 0.8462 - - - - -
1.4774 3500 0.0001 - - - - -
1.4816 3510 0.1514 - - - - -
1.4859 3520 1.0994 - - - - -
1.4901 3530 0.0528 - - - - -
1.4943 3540 0.0212 - - - - -
1.4985 3550 0.0005 - - - - -
1.5027 3560 0.0009 - - - - -
1.5070 3570 0.0006 - - - - -
1.5112 3580 0.0004 - - - - -
1.5154 3590 0.2715 - - - - -
1.5196 3600 0.0004 - - - - -
1.5238 3610 0.0034 - - - - -
1.5281 3620 0.077 - - - - -
1.5323 3630 0.1756 - - - - -
1.5365 3640 0.0012 - - - - -
1.5407 3650 0.0048 - - - - -
1.5450 3660 0.0015 - - - - -
1.5492 3670 0.0001 - - - - -
1.5534 3680 0.0002 - - - - -
1.5576 3690 0.0067 - - - - -
1.5618 3700 0.0493 - - - - -
1.5661 3710 0.0002 - - - - -
1.5703 3720 0.0003 - - - - -
1.5745 3730 1.6643 - - - - -
1.5787 3740 0.0018 - - - - -
1.5829 3750 0.0086 - - - - -
1.5872 3760 0.0005 - - - - -
1.5914 3770 0.0004 - - - - -
1.5956 3780 0.0041 - - - - -
1.5998 3790 0.0061 - - - - -
1.6041 3800 0.0219 - - - - -
1.6083 3810 0.0004 - - - - -
1.6125 3820 0.0 - - - - -
1.6167 3830 0.0532 - - - - -
1.6209 3840 0.0349 - - - - -
1.6252 3850 0.0068 - - - - -
1.6294 3860 0.0114 - - - - -
1.6336 3870 0.0021 - - - - -
1.6378 3880 0.0046 - - - - -
1.6420 3890 0.0075 - - - - -
1.6463 3900 0.0013 - - - - -
1.6505 3910 0.0006 - - - - -
1.6547 3920 0.0003 - - - - -
1.6589 3930 0.0001 - - - - -
1.6631 3940 0.868 - - - - -
1.6674 3950 0.0091 - - - - -
1.6716 3960 0.0289 - - - - -
1.6758 3970 0.3744 - - - - -
1.6800 3980 0.0497 - - - - -
1.6843 3990 0.0004 - - - - -
1.6885 4000 0.0002 - - - - -
1.6927 4010 0.3037 - - - - -
1.6969 4020 1.1779 - - - - -
1.7011 4030 0.0027 - - - - -
1.7054 4040 0.0927 - - - - -
1.7096 4050 0.0036 - - - - -
1.7138 4060 0.0022 - - - - -
1.7180 4070 0.002 - - - - -
1.7222 4080 0.0027 - - - - -
1.7265 4090 0.0213 - - - - -
1.7307 4100 0.4684 - - - - -
1.7349 4110 0.0 - - - - -
1.7391 4120 0.3257 - - - - -
1.7434 4130 0.1449 - - - - -
1.7476 4140 0.0017 - - - - -
1.7518 4150 0.0022 - - - - -
1.7560 4160 1.3197 - - - - -
1.7602 4170 0.0001 - - - - -
1.7645 4180 0.0003 - - - - -
1.7687 4190 0.0018 - - - - -
1.7729 4200 0.007 - - - - -
1.7771 4210 0.0004 - - - - -
1.7813 4220 0.0021 - - - - -
1.7856 4230 0.0004 - - - - -
1.7898 4240 0.0064 - - - - -
1.7940 4250 0.0001 - - - - -
1.7982 4260 0.0004 - - - - -
1.8024 4270 0.0223 - - - - -
1.8067 4280 0.4523 - - - - -
1.8109 4290 0.0005 - - - - -
1.8151 4300 0.0 - - - - -
1.8193 4310 0.6793 - - - - -
1.8236 4320 0.0012 - - - - -
1.8278 4330 0.0033 - - - - -
1.8320 4340 0.0007 - - - - -
1.8362 4350 0.0068 - - - - -
1.8404 4360 0.0004 - - - - -
1.8447 4370 0.078 - - - - -
1.8489 4380 0.0817 - - - - -
1.8531 4390 0.0003 - - - - -
1.8573 4400 0.0038 - - - - -
1.8615 4410 0.2978 - - - - -
1.8658 4420 0.0766 - - - - -
1.8700 4430 0.0056 - - - - -
1.8742 4440 0.0014 - - - - -
1.8784 4450 0.002 - - - - -
1.8827 4460 0.7929 - - - - -
1.8869 4470 0.0307 - - - - -
1.8911 4480 0.0006 - - - - -
1.8953 4490 0.0008 - - - - -
1.8995 4500 0.0198 - - - - -
1.9038 4510 0.001 - - - - -
1.9080 4520 0.0011 - - - - -
1.9122 4530 0.0007 - - - - -
1.9164 4540 0.0019 - - - - -
1.9206 4550 0.002 - - - - -
1.9249 4560 0.1778 - - - - -
1.9291 4570 0.0003 - - - - -
1.9333 4580 0.0001 - - - - -
1.9375 4590 0.0008 - - - - -
1.9417 4600 0.0001 - - - - -
1.9460 4610 0.2698 - - - - -
1.9502 4620 0.0241 - - - - -
1.9544 4630 0.0037 - - - - -
1.9586 4640 0.0002 - - - - -
1.9629 4650 0.0019 - - - - -
1.9671 4660 0.0002 - - - - -
1.9713 4670 0.0004 - - - - -
1.9755 4680 0.0001 - - - - -
1.9797 4690 0.0046 - - - - -
1.9840 4700 0.0047 - - - - -
1.9882 4710 0.008 - - - - -
1.9924 4720 0.0013 - - - - -
1.9966 4730 0.0006 - - - - -
2.0 4738 - 0.6105 0.6061 0.5958 0.5774 0.5612
2.0008 4740 0.0 - - - - -
2.0051 4750 0.1343 - - - - -
2.0093 4760 0.0026 - - - - -
2.0135 4770 0.3764 - - - - -
2.0177 4780 0.0016 - - - - -
2.0220 4790 0.0025 - - - - -
2.0262 4800 0.001 - - - - -
2.0304 4810 0.0 - - - - -
2.0346 4820 0.06 - - - - -
2.0388 4830 0.0109 - - - - -
2.0431 4840 0.0001 - - - - -
2.0473 4850 0.0001 - - - - -
2.0515 4860 0.0002 - - - - -
2.0557 4870 0.0002 - - - - -
2.0599 4880 0.002 - - - - -
2.0642 4890 0.0184 - - - - -
2.0684 4900 0.0 - - - - -
2.0726 4910 0.0125 - - - - -
2.0768 4920 0.0682 - - - - -
2.0810 4930 0.0199 - - - - -
2.0853 4940 0.0009 - - - - -
2.0895 4950 0.002 - - - - -
2.0937 4960 0.0049 - - - - -
2.0979 4970 0.0 - - - - -
2.1022 4980 0.0003 - - - - -
2.1064 4990 0.3536 - - - - -
2.1106 5000 0.0019 - - - - -
2.1148 5010 0.0025 - - - - -
2.1190 5020 0.0129 - - - - -
2.1233 5030 0.0024 - - - - -
2.1275 5040 0.0 - - - - -
2.1317 5050 0.002 - - - - -
2.1359 5060 0.0075 - - - - -
2.1401 5070 0.0001 - - - - -
2.1444 5080 0.0001 - - - - -
2.1486 5090 0.0001 - - - - -
2.1528 5100 0.0007 - - - - -
2.1570 5110 0.0018 - - - - -
2.1612 5120 0.0055 - - - - -
2.1655 5130 0.0002 - - - - -
2.1697 5140 0.001 - - - - -
2.1739 5150 0.0002 - - - - -
2.1781 5160 0.0385 - - - - -
2.1824 5170 0.0002 - - - - -
2.1866 5180 0.0 - - - - -
2.1908 5190 0.0001 - - - - -
2.1950 5200 0.0 - - - - -
2.1992 5210 0.0002 - - - - -
2.2035 5220 0.0001 - - - - -
2.2077 5230 0.0 - - - - -
2.2119 5240 0.0178 - - - - -
2.2161 5250 0.0007 - - - - -
2.2203 5260 0.0012 - - - - -
2.2246 5270 0.0001 - - - - -
2.2288 5280 0.0001 - - - - -
2.2330 5290 0.0001 - - - - -
2.2372 5300 0.0 - - - - -
2.2415 5310 0.0024 - - - - -
2.2457 5320 0.0008 - - - - -
2.2499 5330 0.0003 - - - - -
2.2541 5340 0.0 - - - - -
2.2583 5350 0.0233 - - - - -
2.2626 5360 0.1155 - - - - -
2.2668 5370 0.0022 - - - - -
2.2710 5380 0.002 - - - - -
2.2752 5390 0.0016 - - - - -
2.2794 5400 0.0004 - - - - -
2.2837 5410 0.0013 - - - - -
2.2879 5420 0.0003 - - - - -
2.2921 5430 0.0001 - - - - -
2.2963 5440 0.0045 - - - - -
2.3005 5450 0.0002 - - - - -
2.3048 5460 0.0022 - - - - -
2.3090 5470 0.0008 - - - - -
2.3132 5480 0.0003 - - - - -
2.3174 5490 0.0002 - - - - -
2.3217 5500 0.0003 - - - - -
2.3259 5510 0.0001 - - - - -
2.3301 5520 0.0001 - - - - -
2.3343 5530 0.0038 - - - - -
2.3385 5540 0.0001 - - - - -
2.3428 5550 0.0002 - - - - -
2.3470 5560 0.0 - - - - -
2.3512 5570 0.0001 - - - - -
2.3554 5580 0.0002 - - - - -
2.3596 5590 0.0 - - - - -
2.3639 5600 0.0001 - - - - -
2.3681 5610 0.0001 - - - - -
2.3723 5620 0.0232 - - - - -
2.3765 5630 0.0002 - - - - -
2.3808 5640 0.0 - - - - -
2.3850 5650 0.0004 - - - - -
2.3892 5660 0.0015 - - - - -
2.3934 5670 0.0927 - - - - -
2.3976 5680 0.0 - - - - -
2.4019 5690 0.0 - - - - -
2.4061 5700 0.0008 - - - - -
2.4103 5710 0.0006 - - - - -
2.4145 5720 0.0015 - - - - -
2.4187 5730 0.0 - - - - -
2.4230 5740 0.0001 - - - - -
2.4272 5750 0.0075 - - - - -
2.4314 5760 0.0 - - - - -
2.4356 5770 0.0016 - - - - -
2.4398 5780 0.0035 - - - - -
2.4441 5790 0.0 - - - - -
2.4483 5800 0.0001 - - - - -
2.4525 5810 0.1345 - - - - -
2.4567 5820 0.0006 - - - - -
2.4610 5830 0.0 - - - - -
2.4652 5840 0.0003 - - - - -
2.4694 5850 0.0005 - - - - -
2.4736 5860 0.0117 - - - - -
2.4778 5870 0.0 - - - - -
2.4821 5880 0.2665 - - - - -
2.4863 5890 0.0012 - - - - -
2.4905 5900 0.0 - - - - -
2.4947 5910 0.0001 - - - - -
2.4989 5920 0.0 - - - - -
2.5032 5930 0.0 - - - - -
2.5074 5940 0.0 - - - - -
2.5116 5950 0.0001 - - - - -
2.5158 5960 0.0001 - - - - -
2.5201 5970 0.0 - - - - -
2.5243 5980 0.0 - - - - -
2.5285 5990 0.0412 - - - - -
2.5327 6000 0.0009 - - - - -
2.5369 6010 0.0 - - - - -
2.5412 6020 0.0003 - - - - -
2.5454 6030 0.0004 - - - - -
2.5496 6040 0.0 - - - - -
2.5538 6050 0.0 - - - - -
2.5580 6060 0.0 - - - - -
2.5623 6070 0.0154 - - - - -
2.5665 6080 0.0001 - - - - -
2.5707 6090 0.0001 - - - - -
2.5749 6100 0.1833 - - - - -
2.5791 6110 0.0003 - - - - -
2.5834 6120 0.003 - - - - -
2.5876 6130 0.0 - - - - -
2.5918 6140 0.0 - - - - -
2.5960 6150 0.0 - - - - -
2.6003 6160 0.0 - - - - -
2.6045 6170 0.0001 - - - - -
2.6087 6180 0.0002 - - - - -
2.6129 6190 0.0001 - - - - -
2.6171 6200 0.0001 - - - - -
2.6214 6210 0.0004 - - - - -
2.6256 6220 0.0001 - - - - -
2.6298 6230 0.0 - - - - -
2.6340 6240 0.0001 - - - - -
2.6382 6250 0.0 - - - - -
2.6425 6260 0.0 - - - - -
2.6467 6270 0.0001 - - - - -
2.6509 6280 0.0001 - - - - -
2.6551 6290 0.0019 - - - - -
2.6593 6300 0.0 - - - - -
2.6636 6310 0.4752 - - - - -
2.6678 6320 0.0002 - - - - -
2.6720 6330 0.0 - - - - -
2.6762 6340 0.0257 - - - - -
2.6805 6350 0.0002 - - - - -
2.6847 6360 0.0 - - - - -
2.6889 6370 0.0 - - - - -
2.6931 6380 0.0023 - - - - -
2.6973 6390 0.208 - - - - -
2.7016 6400 0.0002 - - - - -
2.7058 6410 0.0005 - - - - -
2.7100 6420 0.0015 - - - - -
2.7142 6430 0.0 - - - - -
2.7184 6440 0.0001 - - - - -
2.7227 6450 0.0002 - - - - -
2.7269 6460 0.001 - - - - -
2.7311 6470 0.0 - - - - -
2.7353 6480 0.0 - - - - -
2.7396 6490 0.3728 - - - - -
2.7438 6500 0.0 - - - - -
2.7480 6510 0.0004 - - - - -
2.7522 6520 0.0 - - - - -
2.7564 6530 0.0418 - - - - -
2.7607 6540 0.0 - - - - -
2.7649 6550 0.0001 - - - - -
2.7691 6560 0.0002 - - - - -
2.7733 6570 0.0017 - - - - -
2.7775 6580 0.0 - - - - -
2.7818 6590 0.0 - - - - -
2.7860 6600 0.0001 - - - - -
2.7902 6610 0.0 - - - - -
2.7944 6620 0.0 - - - - -
2.7986 6630 0.0002 - - - - -
2.8029 6640 0.0217 - - - - -
2.8071 6650 0.0006 - - - - -
2.8113 6660 0.0002 - - - - -
2.8155 6670 0.0001 - - - - -
2.8198 6680 0.0017 - - - - -
2.8240 6690 0.0015 - - - - -
2.8282 6700 0.0002 - - - - -
2.8324 6710 0.0001 - - - - -
2.8366 6720 0.0003 - - - - -
2.8409 6730 0.0022 - - - - -
2.8451 6740 0.0018 - - - - -
2.8493 6750 0.0002 - - - - -
2.8535 6760 0.0023 - - - - -
2.8577 6770 0.0009 - - - - -
2.8620 6780 0.0 - - - - -
2.8662 6790 0.0017 - - - - -
2.8704 6800 0.0 - - - - -
2.8746 6810 0.0019 - - - - -
2.8789 6820 0.0005 - - - - -
2.8831 6830 0.0 - - - - -
2.8873 6840 0.0001 - - - - -
2.8915 6850 0.0018 - - - - -
2.8957 6860 0.0016 - - - - -
2.9000 6870 0.0001 - - - - -
2.9042 6880 0.0001 - - - - -
2.9084 6890 0.001 - - - - -
2.9126 6900 0.0 - - - - -
2.9168 6910 0.0001 - - - - -
2.9211 6920 0.0 - - - - -
2.9253 6930 0.0172 - - - - -
2.9295 6940 0.0003 - - - - -
2.9337 6950 0.0 - - - - -
2.9379 6960 0.0006 - - - - -
2.9422 6970 0.0043 - - - - -
2.9464 6980 0.0005 - - - - -
2.9506 6990 0.0002 - - - - -
2.9548 7000 0.0001 - - - - -
2.9591 7010 0.0 - - - - -
2.9633 7020 0.0001 - - - - -
2.9675 7030 0.0 - - - - -
2.9717 7040 0.0 - - - - -
2.9759 7050 0.0011 - - - - -
2.9802 7060 0.0001 - - - - -
2.9844 7070 0.0 - - - - -
2.9886 7080 0.0 - - - - -
2.9928 7090 0.0004 - - - - -
2.9970 7100 0.0001 - - - - -
3.0 7107 - 0.636 0.6282 0.616 0.6047 0.5803
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.0rc1
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu118
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
12
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for fitlemon/bge-m3-uz-legal-matryoshka

Base model

BAAI/bge-m3
Finetuned
(196)
this model

Evaluation results