YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

XNLI Base Model

This model was trained on the XNLI dataset using random data selection.

Training Parameters

  • Dataset: XNLI
  • Mode: Base
  • Selection Method: Random
  • Train Size: 2400 examples
  • Epochs: 8
  • Batch Size: 16
  • Effective Batch Size: 64 (batch_size * gradient_accumulation_steps)
  • Learning Rate: 1e-05
  • Patience: 6
  • Max Length: 256
  • Gradient Accumulation Steps: 4
  • Warmup Ratio: 0.1
  • Weight Decay: 0.01
  • Optimizer: AdamW
  • Scheduler: cosine_with_warmup
  • Random Seed: 42

Performance

  • Overall Accuracy: 65.47%
  • Overall Loss: 0.0141

Language-Specific Performance

  • English (EN): 72.22%
  • German (DE): 67.60%
  • Arabic (AR): 63.21%
  • Spanish (ES): 68.72%
  • Hindi (HI): 62.04%
  • Swahili (SW): 59.00%

Model Information

  • Base Model: bert-base-multilingual-cased
  • Task: Natural Language Inference
  • Languages: 6 languages (EN, DE, AR, ES, HI, SW)
Downloads last month
4
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including fledor/xnli_mbert_base_multilingual