File size: 3,939 Bytes
b7b6a6a
f9d0bf8
 
 
 
 
 
 
fa3a3c1
 
b7b6a6a
 
 
 
 
 
 
 
 
 
f9d0bf8
b7b6a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d0bf8
 
 
b7b6a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
base_model:
- meta-llama/Meta-Llama-3-8B
datasets:
- future7/CogniBench
- future7/CogniBench-L
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- text faithfulness
- hallucination detection
- RAG evaluation
- cognitive statements
- factual consistency
---

# CogniDet: Cognitive Faithfulness Detector for LLMs

**CogniDet** is a state-of-the-art model for detecting **both factual and cognitive hallucinations** in Large Language Model (LLM) outputs. Developed as part of the [CogniBench](https://github.com/FUTUREEEEEE/CogniBench) framework, it specifically addresses the challenge of evaluating inference-based statements beyond simple fact regurgitation. The model is presented in the paper [CogniBench: A Legal-inspired Framework and Dataset for Assessing Cognitive Faithfulness of Large Language Models](https://huggingface.co/papers/2505.20767).

## Key Features ✨
1. **Dual Detection Capability**  
   Identifies both:
   - **Factual Hallucinations** (claims contradicting provided context)
   - **Cognitive Hallucinations** (unsupported inferences/evaluations)
   
2. **Legal-Inspired Rigor**  
   Incorporates a tiered evaluation framework (Rational β†’ Grounded β†’ Unequivocal) inspired by legal evidence standards

3. **Efficient Inference**  
   Single-pass detection with **8B parameter Llama3 backbone** (faster than NLI-based methods)

4. **Large-Scale Training**  
   Trained on **CogniBench-L** (24k+ dialogues, 234k+ annotated sentences)

## Performance πŸš€
| Detection Type       | F1 Score |
|----------------------|----------|
| **Overall**          | 70.30     |
| Factual Hallucination| 64.40     |
| **Cognitive Hallucination** | **73.80** |

*Outperforms baselines like SelfCheckGPT (61.1 F1 on cognitive) and RAGTruth (45.3 F1 on factual)*

## Usage πŸ’»
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "future7/CogniDet" 
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

def detect_hallucinations(context, response):
    inputs = tokenizer(
        f"CONTEXT: {context}
RESPONSE: {response}
HALLUCINATIONS:",
        return_tensors="pt"
    )
    outputs = model.generate(**inputs, max_new_tokens=100)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Example usage
context = "Moringa trees grow in USDA zones 9-10. Flowering occurs annually in spring."
response = "In cold regions, Moringa can bloom twice yearly if grown indoors."

print(detect_hallucinations(context, response))
# Output: "Bloom frequency claims in cold regions are speculative"
```

## Training Data πŸ”¬
Trained on **CogniBench-L** featuring:
- 7,058 knowledge-grounded dialogues
- 234,164 sentence-level annotations
- Balanced coverage across 15+ domains (Medical, Legal, etc.)
- Auto-labeled via rigorous pipeline (82.2% agreement with humans)

## Limitations ⚠️
1. Best performance on **English** knowledge-grounded dialogues
2. Domain-specific applications (e.g., clinical diagnosis) may require fine-tuning
3. Context window limited to 8K tokens

## Citation πŸ“š
If you use CogniDet, please cite the CogniBench paper:
```bibtex
@inproceedings{tang2025cognibench,
  title = {CogniBench: A Legal-inspired Framework for Assessing Cognitive Faithfulness of LLMs},
  author = {Tang, Xiaqiang and Li, Jian and Hu, Keyu and Nan, Du 
           and Li, Xiaolong and Zhang, Xi and Sun, Weigao and Xie, Sihong},
  booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)},
  year = {2025},
  pages = {xxx--xxx},  % ζ·»εŠ ι‘΅η θŒƒε›΄
  publisher = {Association for Computational Linguistics},
  location = {Vienna, Austria},
  url = {https://arxiv.org/abs/2505.20767},
  archivePrefix = {arXiv},
  eprint = {2505.20767},
  primaryClass = {cs.CL}
}
```

## Resources πŸ”—
- [CogniBench GitHub](https://github.com/FUTUREEEEEE/CogniBench)