GGUF
llama-cpp
gguf-my-repo
Inference Endpoints
imatrix
conversational
fuzzy-mittenz's picture
Upload README.md with huggingface_hub
d2464ed verified
metadata
license: other
license_name: qwen-research
license_link: https://huggingface.co/MadeAgents/Hammer2.1-3b/blob/main/LICENSE
datasets:
  - Salesforce/xlam-function-calling-60k
  - MadeAgents/xlam-irrelevance-7.5k
base_model: MadeAgents/Hammer2.1-3b
tags:
  - llama-cpp
  - gguf-my-repo

fuzzy-mittenz/Hammer2.1-3b-Q5_K_S-GGUF

This model was converted to GGUF format from MadeAgents/Hammer2.1-3b using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo fuzzy-mittenz/Hammer2.1-3b-Q5_K_S-GGUF --hf-file hammer2.1-3b-q5_k_s-imat.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo fuzzy-mittenz/Hammer2.1-3b-Q5_K_S-GGUF --hf-file hammer2.1-3b-q5_k_s-imat.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo fuzzy-mittenz/Hammer2.1-3b-Q5_K_S-GGUF --hf-file hammer2.1-3b-q5_k_s-imat.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo fuzzy-mittenz/Hammer2.1-3b-Q5_K_S-GGUF --hf-file hammer2.1-3b-q5_k_s-imat.gguf -c 2048