Thoma
End of training
d137284 verified
|
raw
history blame
4.85 kB
metadata
library_name: peft
base_model: oopsung/llama2-7b-n-ox-test-v1
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: a3da2374-35fa-4202-9d7c-76441bafae87
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: oopsung/llama2-7b-n-ox-test-v1
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 4d79fb1fb8c5e535_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4d79fb1fb8c5e535_train_data.json
  type:
    field_instruction: prompt
    field_output: text
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 300
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: great0001/a3da2374-35fa-4202-9d7c-76441bafae87
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 6115
micro_batch_size: 4
mlflow_experiment_name: /tmp/4d79fb1fb8c5e535_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8a8a88d9-a691-4f54-9486-9182caa88758
wandb_project: SN56-33
wandb_run: your_name
wandb_runid: 8a8a88d9-a691-4f54-9486-9182caa88758
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

a3da2374-35fa-4202-9d7c-76441bafae87

This model is a fine-tuned version of oopsung/llama2-7b-n-ox-test-v1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1485

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 6115

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 1.9852
1.3236 0.0507 300 1.3126
1.2706 0.1014 600 1.2655
1.2347 0.1520 900 1.2386
1.2262 0.2027 1200 1.2222
1.1851 0.2534 1500 1.2076
1.2077 0.3041 1800 1.1966
1.1848 0.3547 2100 1.1903
1.1881 0.4054 2400 1.1822
1.1857 0.4561 2700 1.1781
1.1703 0.5068 3000 1.1698
1.1637 0.5575 3300 1.1645
1.165 0.6081 3600 1.1589
1.152 0.6588 3900 1.1553
1.1557 0.7095 4200 1.1511
1.1591 0.7602 4500 1.1488
1.1438 0.8108 4800 1.1451
1.1348 0.8615 5100 1.1438
1.1426 0.9122 5400 1.1393
1.1468 0.9629 5700 1.1358
0.9472 1.0136 6000 1.1485

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1