SentenceTransformer based on sergeyzh/rubert-mini-frida

This is a sentence-transformers model finetuned from sergeyzh/rubert-mini-frida on the duplicates-checker-finetuning-preview dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sergeyzh/rubert-mini-frida
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 312 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • duplicates-checker-finetuning-preview

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'USSD-команда для проверки баланса СберМобайл - *100#.',
    'Чтобы узнать баланс СберМобайл, наберите *100#.',
    'statement_statement',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric binary-sts-validation binary-sts-test
cosine_accuracy 0.911 0.8926
cosine_accuracy_threshold 0.6444 0.7227
cosine_f1 0.9143 0.8932
cosine_f1_threshold 0.5794 0.7205
cosine_precision 0.8858 0.8881
cosine_recall 0.9448 0.8984
cosine_ap 0.9112 0.9168
cosine_mcc 0.8237 0.7853

Training Details

Training Dataset

duplicates-checker-finetuning-preview

  • Dataset: duplicates-checker-finetuning-preview
  • Size: 6,921 training samples
  • Columns: sentence1, sentence2, label, task_type, product, and stratify_col
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label task_type product stratify_col
    type string string int string string string
    details
    • min: 4 tokens
    • mean: 17.09 tokens
    • max: 36 tokens
    • min: 5 tokens
    • mean: 17.8 tokens
    • max: 37 tokens
    • 0: ~49.60%
    • 1: ~50.40%
    • min: 5 tokens
    • mean: 5.67 tokens
    • max: 7 tokens
    • min: 3 tokens
    • mean: 5.4 tokens
    • max: 9 tokens
    • min: 9 tokens
    • mean: 12.08 tokens
    • max: 17 tokens
  • Samples:
    sentence1 sentence2 label task_type product stratify_col
    Облигации Федерального Займа выпускает Министерство финансов РФ, а не Центральный Банк. Облигации Федерального Займа выпускает Министерство финансов РФ, а не СберБанк. 0 correction_correction Облигации 0_correction_correction_Облигации
    Льгота на долгосрочное владение паями ОПИФ действует при владении более 3 лет, а не 1 года. Лимит дохода для ЛДВ по ОПИФ составляет 3 млн рублей за каждый год владения, а не 1 млн. 0 correction_correction Открытый паевой инвестиционный фонд 0_correction_correction_Открытый паевой инвестиционный фонд
    Продажа паев ЗПИФ на бирже не требует поиска покупателя, в отличие от продажи по договору купли-продажи. Потенциальный доход от фонда Современный 8 включает рентный доход и доход от роста стоимости, а не только рентный. 0 correction_correction Закрытый паевой инвестиционный фонд 0_correction_correction_Закрытый паевой инвестиционный фонд
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

duplicates-checker-finetuning-preview

  • Dataset: duplicates-checker-finetuning-preview
  • Size: 865 evaluation samples
  • Columns: sentence1, sentence2, label, task_type, product, and stratify_col
  • Approximate statistics based on the first 865 samples:
    sentence1 sentence2 label task_type product stratify_col
    type string string int string string string
    details
    • min: 7 tokens
    • mean: 17.05 tokens
    • max: 36 tokens
    • min: 7 tokens
    • mean: 17.79 tokens
    • max: 33 tokens
    • 0: ~49.71%
    • 1: ~50.29%
    • min: 5 tokens
    • mean: 5.69 tokens
    • max: 7 tokens
    • min: 3 tokens
    • mean: 5.41 tokens
    • max: 9 tokens
    • min: 9 tokens
    • mean: 12.1 tokens
    • max: 17 tokens
  • Samples:
    sentence1 sentence2 label task_type product stratify_col
    Какой тариф Сбера подходит для начинающих инвесторов на ИИС-3? Какой тарифный план Сбера рекомендован для новичков, использующих ИИС-3? 1 question_question Индивидуальный инвестиционный счёт 1_question_question_Индивидуальный инвестиционный счёт
    Какие типы кредитных карт Сбера вы предлагаете, и какие преимущества у каждой из них? Расскажите о видах Кредитных СберКарт и их плюсах. 1 question_question Кредитная СберКарта 1_question_question_Кредитная СберКарта
    При отсутствии трудовой книжки стаж подтверждается справками из архива. При отсутствии трудовой книжки стаж подтверждается устными показаниями свидетелей. 0 statement_statement Перевод пенсии 0_statement_statement_Перевод пенсии
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 9.98500910083967e-05
  • weight_decay: 0.27015230802651624
  • num_train_epochs: 25
  • warmup_ratio: 0.13341980194519668
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 9.98500910083967e-05
  • weight_decay: 0.27015230802651624
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 25
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.13341980194519668
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss binary-sts-validation_cosine_ap binary-sts-test_cosine_ap
0.2304 50 0.2346 - - -
0.4608 100 0.2214 0.2321 0.7873 -
0.6912 150 0.193 - - -
0.9217 200 0.1788 0.1722 0.8259 -
1.1521 250 0.1643 - - -
1.3825 300 0.1579 0.1469 0.8467 -
1.6129 350 0.1499 - - -
1.8433 400 0.1429 0.1371 0.8447 -
2.0737 450 0.1299 - - -
2.3041 500 0.1216 0.1261 0.8494 -
2.5346 550 0.121 - - -
2.7650 600 0.1099 0.1182 0.8761 -
2.9954 650 0.115 - - -
3.2258 700 0.0932 0.1114 0.8760 -
3.4562 750 0.0926 - - -
3.6866 800 0.0878 0.1068 0.8873 -
3.9171 850 0.0897 - - -
4.1475 900 0.0733 0.1013 0.9007 -
4.3779 950 0.069 - - -
4.6083 1000 0.0683 0.0987 0.8955 -
4.8387 1050 0.0706 - - -
5.0691 1100 0.0643 0.0962 0.8999 -
5.2995 1150 0.0541 - - -
5.5300 1200 0.0558 0.0933 0.9067 -
5.7604 1250 0.0572 - - -
5.9908 1300 0.0579 0.0928 0.9040 -
6.2212 1350 0.0434 - - -
6.4516 1400 0.047 0.0938 0.9049 -
6.6820 1450 0.0466 - - -
6.9124 1500 0.044 0.0917 0.9062 -
7.1429 1550 0.0395 - - -
7.3733 1600 0.0365 0.0876 0.9117 -
7.6037 1650 0.0368 - - -
7.8341 1700 0.0372 0.0882 0.9116 -
8.0645 1750 0.0393 - - -
8.2949 1800 0.0312 0.0856 0.9112 -
8.5253 1850 0.0315 - - -
8.7558 1900 0.0311 0.0860 0.9116 -
8.9862 1950 0.0341 - - -
9.2166 2000 0.0272 0.0850 0.9153 -
9.4470 2050 0.0272 - - -
9.6774 2100 0.0244 0.0876 0.9117 -
9.9078 2150 0.0284 - - -
10.1382 2200 0.0232 0.0860 0.9167 -
10.3687 2250 0.0253 - - -
10.5991 2300 0.0228 0.0856 0.9166 -
10.8295 2350 0.0224 - - -
11.0599 2400 0.0257 0.0856 0.9156 -
11.2903 2450 0.019 - - -
11.5207 2500 0.0187 0.0870 0.9129 -
11.7512 2550 0.0228 - - -
11.9816 2600 0.0214 0.0858 0.9173 -
12.2120 2650 0.0181 - - -
12.4424 2700 0.0197 0.0850 0.9249 -
12.6728 2750 0.0186 - - -
12.9032 2800 0.0174 0.0872 0.9233 -
13.1336 2850 0.0186 - - -
13.3641 2900 0.0132 0.0851 0.9280 -
13.5945 2950 0.0151 - - -
13.8249 3000 0.0184 0.0865 0.9210 -
14.0553 3050 0.0168 - - -
14.2857 3100 0.0136 0.0849 0.9252 -
14.5161 3150 0.0161 - - -
14.7465 3200 0.0157 0.0826 0.9318 -
14.9770 3250 0.0168 - - -
15.2074 3300 0.0134 0.0842 0.9302 -
15.4378 3350 0.0133 - - -
15.6682 3400 0.0129 0.0852 0.9263 -
15.8986 3450 0.0146 - - -
16.1290 3500 0.0121 0.0847 0.9274 -
16.3594 3550 0.0104 - - -
16.5899 3600 0.012 0.0840 0.9299 -
16.8203 3650 0.0119 - - -
17.0507 3700 0.0137 0.0852 0.9292 -
17.2811 3750 0.012 - - -
17.5115 3800 0.0118 0.0843 0.9281 -
17.7419 3850 0.0122 - - -
17.9724 3900 0.0106 0.0852 0.9280 -
18.2028 3950 0.0112 - - -
18.4332 4000 0.0099 0.0847 0.9311 -
18.6636 4050 0.0093 - - -
18.8940 4100 0.012 0.0860 0.9304 -
19.1244 4150 0.0107 - - -
19.3548 4200 0.0105 0.0852 0.9289 -
19.5853 4250 0.0092 - - -
19.8157 4300 0.0101 0.0860 0.9303 -
20.0461 4350 0.0099 - - -
20.2765 4400 0.01 0.0856 0.9319 -
20.5069 4450 0.0108 - - -
20.7373 4500 0.0084 0.0853 0.9301 -
20.9677 4550 0.0097 - - -
21.1982 4600 0.0071 0.0849 0.9308 -
21.4286 4650 0.0088 - - -
21.6590 4700 0.0094 0.0850 0.9310 -
21.8894 4750 0.0085 - - -
22.1198 4800 0.0099 0.0856 0.9304 -
22.3502 4850 0.0091 - - -
22.5806 4900 0.0086 0.0851 0.9309 -
22.8111 4950 0.0082 - - -
23.0415 5000 0.008 0.0857 0.9305 -
23.2719 5050 0.0084 - - -
23.5023 5100 0.0084 0.0855 0.9305 -
23.7327 5150 0.0078 - - -
23.9631 5200 0.0086 0.0857 0.9303 -
24.1935 5250 0.0082 - - -
24.4240 5300 0.0078 0.0855 0.9306 -
24.6544 5350 0.0077 - - -
24.8848 5400 0.0074 0.0855 0.9305 -
-1 -1 - - 0.9112 0.9168
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
13
Safetensors
Model size
32.3M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for galkinv42/sergeyzh_rubert-mini-frida-final-finetuned-duplicates

Finetuned
(2)
this model

Evaluation results