Structured-FP16-KD-NID
This model is a fine-tuned version of huawei-noah/TinyBERT_General_4L_312D on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0343
- Accuracy: 0.9926
- Precision: 0.9546
- Recall: 0.9514
- F1 score: 0.9515
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 650
- eval_batch_size: 650
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|---|---|---|
0.1509 | 1.0 | 1828 | 0.1228 | 0.9830 | 0.8658 | 0.8392 | 0.8343 |
0.0961 | 2.0 | 3656 | 0.0884 | 0.9865 | 0.9110 | 0.8672 | 0.8652 |
0.0812 | 3.0 | 5484 | 0.0763 | 0.9879 | 0.9152 | 0.8869 | 0.8882 |
0.073 | 4.0 | 7312 | 0.0650 | 0.9889 | 0.9252 | 0.8966 | 0.9007 |
0.0605 | 5.0 | 9140 | 0.0568 | 0.9897 | 0.9272 | 0.9026 | 0.9075 |
0.0571 | 6.0 | 10968 | 0.0516 | 0.9902 | 0.9131 | 0.9202 | 0.9156 |
0.0487 | 7.0 | 12796 | 0.0460 | 0.9909 | 0.9282 | 0.9228 | 0.9247 |
0.045 | 8.0 | 14624 | 0.0471 | 0.9907 | 0.9219 | 0.9208 | 0.9196 |
0.0396 | 9.0 | 16452 | 0.0443 | 0.9910 | 0.9279 | 0.9253 | 0.9258 |
0.0409 | 10.0 | 18280 | 0.0422 | 0.9913 | 0.9269 | 0.9315 | 0.9288 |
0.0366 | 11.0 | 20108 | 0.0397 | 0.9916 | 0.9264 | 0.9359 | 0.9308 |
0.037 | 12.0 | 21936 | 0.0387 | 0.9919 | 0.9336 | 0.9307 | 0.9308 |
0.0367 | 13.0 | 23764 | 0.0374 | 0.9921 | 0.9317 | 0.9340 | 0.9320 |
0.0315 | 14.0 | 25592 | 0.0379 | 0.9921 | 0.9313 | 0.9376 | 0.9338 |
0.0325 | 15.0 | 27420 | 0.0353 | 0.9925 | 0.9319 | 0.9389 | 0.9349 |
0.0299 | 16.0 | 29248 | 0.0351 | 0.9924 | 0.9324 | 0.9376 | 0.9347 |
0.028 | 17.0 | 31076 | 0.0350 | 0.9924 | 0.9426 | 0.9462 | 0.9424 |
0.0303 | 18.0 | 32904 | 0.0347 | 0.9926 | 0.9541 | 0.9494 | 0.9501 |
0.0255 | 19.0 | 34732 | 0.0345 | 0.9926 | 0.9520 | 0.9501 | 0.9501 |
0.0259 | 20.0 | 36560 | 0.0343 | 0.9926 | 0.9546 | 0.9514 | 0.9515 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support