# English-Yoruba STEM Translation Model | |
This model is trained to translate English STEM content to Yoruba. | |
## Model Details | |
- **Architecture:** Transformer-based sequence-to-sequence model | |
- **Base Model:** Davlan/mt5-base-en-yor-mt | |
- **Training Data:** YorubaSTEM1.0 | |
- **Performance:** BLEU: 36.08 | |
## Usage | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained("gbelewade/YorubaSTEMt5") | |
model = AutoModelForSeq2SeqLM.from_pretrained("gbelewade/YorubaSTEMt5") | |
# Translate English text to Yoruba | |
english_text = "The chemical formula for water is H2O." | |
inputs = tokenizer(english_text, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
yoruba_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(yoruba_text) | |
## Limitations | |
[Describe any known limitations of the model] | |
## Citation | |