gchhablani's picture
Update README.md
130a172
|
raw
history blame
2.38 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert-base-cased-finetuned-qnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9099395936298736

bert-base-cased-finetuned-qnli

This model is a fine-tuned version of bert-base-cased on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3986
  • Accuracy: 0.9099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

This model is trained using the run_glue script. The following command was used:

#!/usr/bin/bash

python ../run_glue.py \
  --model_name_or_path bert-base-cased \
  --task_name qnli \
  --do_train \
  --do_eval \
  --max_seq_length 512 \
  --per_device_train_batch_size 16 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir bert-base-cased-finetuned-qnli \
  --push_to_hub \
  --hub_strategy all_checkpoints \
  --logging_strategy epoch \
  --save_strategy epoch \
  --evaluation_strategy epoch \

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
0.337 1.0 6547 0.9013 0.2448
0.1971 2.0 13094 0.9143 0.2839
0.1175 3.0 19641 0.9099 0.3986

Framework versions

  • Transformers 4.11.0.dev0
  • Pytorch 1.9.0
  • Datasets 1.12.1
  • Tokenizers 0.10.3