Visualize in Weights & Biases

metadata-cls-no-gov-8k

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3385
  • Accuracy: 0.9481
  • F1: 0.8232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.553 1.6129 200 0.2901 0.9226 0.6952
0.17 3.2258 400 0.2574 0.9396 0.7657
0.1421 4.8387 600 0.2292 0.9421 0.8178
0.0916 6.4516 800 0.2295 0.9472 0.8307
0.0554 8.0645 1000 0.2675 0.9464 0.8014
0.053 9.6774 1200 0.2816 0.9498 0.8131
0.029 11.2903 1400 0.3140 0.9498 0.8223
0.0207 12.9032 1600 0.3279 0.9464 0.8176
0.0186 14.5161 1800 0.3495 0.9489 0.8263
0.0137 16.1290 2000 0.3347 0.9515 0.8313
0.0135 17.7419 2200 0.3311 0.9506 0.8402
0.0093 19.3548 2400 0.3385 0.9481 0.8232

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for gechim/metadata-cls-no-gov-8k

Finetuned
(217)
this model