LLM text generation python examples
- run_llm.py
from transformers import AutoConfig, AutoTokenizer
import onnxruntime
import numpy as np
# 1. Load config, processor, and model
path_to_model = "./llm/model"
path_to_tokenizer = "./llm/tokenizer"
config = AutoConfig.from_pretrained(path_to_model)
tokenizer = AutoTokenizer.from_pretrained(path_to_tokenizer)
decoder_session = onnxruntime.InferenceSession(f"{path_to_model}/q4f16.onnx")
## Set config values
num_key_value_heads = config.num_key_value_heads
head_dim = config.head_dim
num_hidden_layers = config.num_hidden_layers
eos_token_id = 106 # 106 is for <end_of_turn>
# 2. Prepare inputs
## Create input messages
messages = [
{ "role": "system", "content": "You are a helpful assistant." },
{ "role": "user", "content": "Write me a short poem about Machine Learning." },
]
## Apply tokenizer
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np")
## Prepare decoder inputs
batch_size = inputs['input_ids'].shape[0]
past_key_values = {
f'past_key_values.{layer}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
for layer in range(num_hidden_layers)
for kv in ('key', 'value')
}
input_ids = inputs['input_ids']
position_ids = np.tile(np.arange(1, input_ids.shape[-1] + 1), (batch_size, 1))
# 3. Generation loop
max_new_tokens = 128
generated_tokens = np.array([[]], dtype=np.int64)
for i in range(max_new_tokens):
logits, *present_key_values = decoder_session.run(None, dict(
input_ids=input_ids,
position_ids=position_ids,
**past_key_values,
))
## Update values for next generation loop
input_ids = logits[:, -1].argmax(-1, keepdims=True)
position_ids = position_ids[:, -1:] + 1
for j, key in enumerate(past_key_values):
past_key_values[key] = present_key_values[j]
generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
if (input_ids == eos_token_id).all():
break
## (Optional) Streaming
print(tokenizer.decode(input_ids[0]), end='', flush=True)
print()
# 4. Output result
print(tokenizer.batch_decode(generated_tokens))
VLM text generation python examples
- run_vlm.py
import argparse
import requests
import onnxruntime
from transformers import AutoTokenizer
import numpy as np
import time
from PIL import Image
IMAGE_TOKEN_INDEX = 151646
MAX_GEN_LEN = 128
USE_SAMPLING = True
print("Loading inference sessions...")
load_start = time.time()
image_emb_session = onnxruntime.InferenceSession("vlm/model/vision_encoder.onnx")
text_emb_session = onnxruntime.InferenceSession("vlm/model/token_embedding.onnx")
decoding_session = onnxruntime.InferenceSession("vlm/model/decoder.onnx")
load_end = time.time()
print(f"Inference sessions are loaded. Loading takes {load_end-load_start:0.2f} sec")
def main(args):
tokenizer = AutoTokenizer.from_pretrained("./vlm/tokenizer")
tokenizer.add_tokens(["<image>"], special_tokens=True)
query = args.input_text
prompt = f"<|im_start|>user\n<image>\n{query}<|im_end|>\n<|im_start|>assistant\n"
past_kv_values, first_token, input_token_len = prefill(args, tokenizer, prompt)
decode(args, tokenizer, past_kv_values, first_token, input_token_len)
def process_image(image_path):
# Load image
if "https" in image_path:
image = Image.open(requests.get(image_path, stream=True).raw)
else:
image = Image.open(image_path)
crop_size = (224, 224)
do_center_crop = True
do_convert_rgb = True
do_normalize = True
do_rescale = True
do_resize = True
image_mean = [0.48145466, 0.4578275, 0.40821073]
image_std = [0.26862954, 0.26130258, 0.27577711]
rescale_factor = 0.00392156862745098 # 1/255
size = {"shortest_edge": 224}
resample = Image.BICUBIC # resample = 3
# Convert to rgb
if do_convert_rgb:
image = image.convert("RGB")
# Resize image
if do_resize:
shortest_edge = min(image.size)
scale_factor = size["shortest_edge"] / shortest_edge
new_size = (int(image.width * scale_factor), int(image.height * scale_factor))
image = image.resize(new_size, resample=resample)
# Center Crop
if do_center_crop:
left = (image.width - crop_size[0]) / 2
top = (image.height - crop_size[1]) / 2
right = (image.width + crop_size[0]) / 2
bottom = (image.height + crop_size[1]) / 2
image = image.crop((left, top, right, bottom))
# Convert to image array
image_array = np.array(image).astype(np.float32)
# Rescale (0-255 to 0-1)
if do_rescale:
image_array = image_array * rescale_factor
# Normalize
if do_normalize:
image_array = (image_array - image_mean) / image_std
# (H, W, C) -> (C, H, W)
image_array = np.transpose(image_array, (2, 0, 1))
# add batch dim (1, C, H, W)
image_array = np.expand_dims(image_array, axis=0)
return image_array.astype(np.float32)
def top_p_sampling(last_logits, top_p=0.99):
sorted_indices = np.argsort(-last_logits)
sorted_logits = last_logits[sorted_indices]
cumulative_probs = np.cumsum(np.exp(sorted_logits - np.max(sorted_logits)))
cumulative_probs /= cumulative_probs[-1]
cutoff_index = np.searchsorted(cumulative_probs, top_p, side="right")
probs = np.exp(sorted_logits[: cutoff_index + 1] - np.max(sorted_logits[: cutoff_index + 1]))
probs /= np.sum(probs)
next_token = np.random.choice(sorted_indices[: cutoff_index + 1], p=probs)
return next_token
# Prefill step
# Inputs
## input_ids: [1, seq_len]
## past_key_values: each layer needs key[1, 2, 0, kv_dim], value[1, 2, 0, kv_dim] => total 56 kv
# Outputs
## logits: [1, seq_len, 151936]
## present: each layer returns key[1, 2, seq_len, kv_dim], value[1, 2, seq_len, kv_dim] => total 56 kv
def prefill(args, tokenizer, input_prompt):
print("Running prefill step...")
prefill_start = time.time()
input_ids = tokenizer(input_prompt)["input_ids"]
image_token_pos = input_ids.index(IMAGE_TOKEN_INDEX)
pixel_value = process_image(args.image_path)
# Get image embedding & Project image embedding to text embedding space
image_emb_output = image_emb_session.run(None, {"pixel_values": pixel_value})
image_features_proj = image_emb_output[0]
# Get text embedding
text_emb_output = text_emb_session.run(None, {"input_ids": [input_ids]})
input_features = text_emb_output[0]
# Split text embedding
pre_image_text_emb = input_features[:, :image_token_pos, :]
post_image_text_emb = input_features[:, image_token_pos + 1 :, :]
# Merge text embedding and image embedding
hidden_states = np.concatenate((pre_image_text_emb, image_features_proj, post_image_text_emb), axis=1)
input_token_len = hidden_states.shape[1]
# Prepare inputs used in prefill step with dummy input for initial past kv value
prefill_input = {
"/model/embed_tokens/Gather_output_0": hidden_states,
"attention_mask": np.expand_dims(np.ones(input_token_len).astype(np.int64), axis=0),
"position_ids": np.expand_dims(np.arange(input_token_len), axis=0),
}
for i in range(24):
entities = ["key", "value"]
for entity in entities:
input_name = f"past_key_values.{i}.{entity}"
prefill_input[input_name] = np.random.rand(1, 2, 0, 64).astype(np.float32)
# Run prefill
prefill_outputs = decoding_session.run(None, prefill_input)
# Get past kv values for decode step
past_kv_values = prefill_outputs[1:]
# Get first token with top-p sampling
if USE_SAMPLING:
last_logits = prefill_outputs[0][0][-1]
next_token = top_p_sampling(last_logits)
else:
next_token = prefill_outputs[0].argmax(-1)[0][-1]
prefill_done = time.time()
print(f"Prefill step done. Throughtput: {input_token_len/(prefill_done - prefill_start):0.2f} token/sec")
return past_kv_values, next_token, input_token_len
# Generation step
# Inputs
## input_ids: [1, 1]
## past_key_values: each layer needs key[1, 2, past_seq_len, kv_dim], value[1, 2, past_seq_len, kv_dim] => total 56 kv
# Outputs
## logits: [1, 1, 151936]
## present: each layer returns key[1, 2, seq_len, kv_dim], value[1, 2, seq_len, kv_dim] => total 56 kv
def decode(args, tokenizer, past_kv_values, first_token, input_token_len):
print("Runing decode step...", end="\n\n")
decode_start = time.time()
generated_ids = [first_token]
next_token = first_token
for last_token_id in range(MAX_GEN_LEN):
embedding_output = text_emb_session.run(None, {"input_ids": [[next_token]]})
# Get new token's embedding
hidden_states = embedding_output[0]
# Prepare inputs for decoding step
decoding_input = {
"/model/embed_tokens/Gather_output_0": hidden_states.astype(np.float32),
"attention_mask": [[1]],
"position_ids": [[input_token_len]],
}
input_token_len += 1
for j in range(24):
for k in range(2):
if k == 0:
input_name = f"past_key_values.{j}.key"
else:
input_name = f"past_key_values.{j}.value"
decoding_input[input_name] = past_kv_values[2 * j + k].astype(np.float32)
# Run decoding
decoding_outputs = decoding_session.run(None, decoding_input)
# Save kv values for next step
past_kv_values = decoding_outputs[1:]
# Get next token with top_p sampling
last_logits = decoding_outputs[0][0][-1]
if USE_SAMPLING:
next_token = top_p_sampling(last_logits)
else:
next_token = decoding_outputs[0].argmax(-1)[0][-1]
if next_token == tokenizer.eos_token_id:
break
# Save generated token
generated_ids.append(next_token)
decode_done = time.time()
response = tokenizer.decode(generated_ids)
print(f"Response: {response}")
with open(args.output_path, 'w') as f:
f.write(response)
print(f"\nDecode step done. Throughtput: {last_token_id/(decode_done - decode_start):0.2f} token/sec")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_text", type=str, help="Input query for inference", default="Where was this photo taken?")
parser.add_argument("--image_path", type=str, help="Local image path or image url", default="assets/test_image.png")
parser.add_argument("--output_path", type=str, help="Output path to save the response", default="output.txt")
args = parser.parse_args()
main(args)
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support