Built with Axolotl

See axolotl config

axolotl version: 0.10.0

base_model: mistralai/Ministral-8B-Instruct-2410
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
bnb_4bit_use_double_quant: false
bnb_4bit_quant_type: null
bnb_4bit_compute_dtype: null
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
- path: /workspace/FinLoRA/data/train/financebench_train.jsonl
  type:
    system_prompt: ''
    field_system: system
    field_instruction: context
    field_output: target
    format: '[INST] {instruction} [/INST]'
    no_input_format: '[INST] {instruction} [/INST]'
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/financebench_mistral_8b_8bits_r8
peft_use_dora: false
peft_use_rslora: false
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: financebench_mistral_8b_8bits_r8
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>

workspace/FinLoRA/lora/axolotl-output/financebench_mistral_8b_8bits_r8

This model is a fine-tuned version of mistralai/Ministral-8B-Instruct-2410 on the /workspace/FinLoRA/data/train/financebench_train.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 42

Training results

Training Loss Epoch Step Validation Loss
No log 0 0 2.3646
No log 0.2857 3 2.3804
No log 0.5714 6 2.3694
No log 0.8571 9 2.2451
No log 1.0952 12 2.1779
No log 1.3810 15 1.9675
No log 1.6667 18 1.7781
No log 1.9524 21 1.6209
No log 2.1905 24 1.5513
No log 2.4762 27 1.5048
No log 2.7619 30 1.4547
No log 3.0 33 1.4426
No log 3.2857 36 1.4424
No log 3.5714 39 1.4148
No log 3.8571 42 1.4296

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ghostof0days/financebench_ministral_8b_8bits_r8

Adapter
(79)
this model