See axolotl config
axolotl version: 0.10.0
base_model: mistralai/Ministral-8B-Instruct-2410
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
bnb_4bit_use_double_quant: false
bnb_4bit_quant_type: null
bnb_4bit_compute_dtype: null
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
- path: /workspace/FinLoRA/data/train/finer_train_batched.jsonl
type:
system_prompt: ''
field_system: system
field_instruction: context
field_output: target
format: '[INST] {instruction} [/INST]'
no_input_format: '[INST] {instruction} [/INST]'
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/finer_mistral_8b_8bits_r8
peft_use_dora: false
peft_use_rslora: false
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: finer_mistral_8b_8bits_r8
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
workspace/FinLoRA/lora/axolotl-output/finer_mistral_8b_8bits_r8
This model is a fine-tuned version of mistralai/Ministral-8B-Instruct-2410 on the /workspace/FinLoRA/data/train/finer_train_batched.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.0319
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1226
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 0.3593 |
No log | 0.2513 | 77 | 0.0560 |
No log | 0.5027 | 154 | 0.0490 |
No log | 0.7540 | 231 | 0.0393 |
No log | 1.0033 | 308 | 0.0391 |
No log | 1.2546 | 385 | 0.0375 |
No log | 1.5059 | 462 | 0.0381 |
0.0488 | 1.7572 | 539 | 0.0358 |
0.0488 | 2.0065 | 616 | 0.0348 |
0.0488 | 2.2579 | 693 | 0.0343 |
0.0488 | 2.5092 | 770 | 0.0328 |
0.0488 | 2.7605 | 847 | 0.0330 |
0.0488 | 3.0098 | 924 | 0.0332 |
0.0266 | 3.2611 | 1001 | 0.0327 |
0.0266 | 3.5124 | 1078 | 0.0327 |
0.0266 | 3.7638 | 1155 | 0.0319 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ghostof0days/finer_ministral_8b_8bits_r8
Base model
mistralai/Ministral-8B-Instruct-2410