goodcasper's picture
End of training
f933aae verified
metadata
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_v2_r18vd
tags:
  - generated_from_trainer
model-index:
  - name: kvasir_seg_rtdetrv2_r18_test_fps
    results: []

kvasir_seg_rtdetrv2_r18_test_fps

This model is a fine-tuned version of PekingU/rtdetr_v2_r18vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.7736
  • Map: 0.6786
  • Map 50: 0.865
  • Map 75: 0.7285
  • Map Small: 0.0
  • Map Medium: 0.5729
  • Map Large: 0.6933
  • Mar 1: 0.6607
  • Mar 10: 0.8706
  • Mar 100: 0.9114
  • Mar Small: 0.0
  • Mar Medium: 0.79
  • Mar Large: 0.922
  • Map Polyp: 0.6786
  • Mar 100 Polyp: 0.9114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Polyp Mar 100 Polyp
222.0855 1.0 100 27.8979 0.2324 0.3276 0.2381 0.0 0.0033 0.2491 0.4327 0.6583 0.7569 0.0 0.47 0.775 0.2324 0.7569
21.4558 2.0 200 8.5908 0.4453 0.6029 0.4705 0.0 0.2753 0.4596 0.6161 0.7815 0.872 0.0 0.71 0.8845 0.4453 0.872
11.9198 3.0 300 7.3897 0.559 0.7445 0.5928 0.0 0.3981 0.5748 0.6156 0.8218 0.8806 0.0 0.74 0.892 0.559 0.8806
10.1107 4.0 400 6.7691 0.5087 0.691 0.5261 0.0 0.258 0.53 0.6185 0.8047 0.8744 0.0 0.61 0.892 0.5087 0.8744
8.9974 5.0 500 6.1887 0.6247 0.7927 0.6818 0.0 0.51 0.6464 0.6682 0.8346 0.8872 0.0 0.69 0.9015 0.6247 0.8872
8.4837 6.0 600 6.0117 0.6313 0.82 0.6738 0.0 0.4952 0.6465 0.627 0.8502 0.9028 0.0 0.74 0.9155 0.6313 0.9028
7.9083 7.0 700 6.0504 0.6328 0.8234 0.6877 0.0 0.5697 0.6459 0.6412 0.8545 0.891 0.0 0.77 0.9015 0.6328 0.891
7.4364 8.0 800 5.9616 0.6493 0.8454 0.6945 0.0 0.6155 0.6611 0.6445 0.8635 0.9033 0.0 0.78 0.914 0.6493 0.9033
7.2255 9.0 900 5.7790 0.6767 0.8628 0.7297 0.0 0.5687 0.6914 0.663 0.8739 0.9047 0.0 0.79 0.915 0.6767 0.9047
6.9854 10.0 1000 5.7736 0.6786 0.865 0.7285 0.0 0.5729 0.6933 0.6607 0.8706 0.9114 0.0 0.79 0.922 0.6786 0.9114

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1