language:
- tr
thumbnail: null
tags:
- gpt2
- turkish
license: Apache 2.0
datasets:
- wikipedia-turkish
metrics:
- perplexity
- accuracy
widget:
- text: Bu yazıyı bir bilgisayar yazdı. Yazarken
context: ''
- text: İnternete kolay erişim sayesinde dünya daha da küçüldü. Bunun sonucunda
context: ''
MyModel
Model description
This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020
Work has been done on Pierre Guillou tutorial as on this page. (https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb)
Code is converted to work with Fastai 2.X .
Using Google Colab for training.
Additional tutorial and source will be in https://github.com/gorkemgoknar in later stage.
Current accuracy 28.9 % , Perplexity : 86.71
Models are available:
- [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish)
Intended uses & limitations
How to use
Install
from transformers import AutoTokenizer, AutoModelWithLMHead
import torch
tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-small-turkish")
model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-small-turkish")
# Get sequence length max of 1024
tokenizer.model_max_length=1024
model.eval() # disable dropout (or leave in train mode to finetune)
Generate 1 word
# input sequence
text = "Bu yazıyı bilgisayar yazdı."
inputs = tokenizer(text, return_tensors="pt")
# model output
outputs = model(**inputs, labels=inputs["input_ids"])
loss, logits = outputs[:2]
predicted_index = torch.argmax(logits[0, -1, :]).item()
predicted_text = tokenizer.decode([predicted_index])
# results
print('input text:', text)
print('predicted text:', predicted_text)
# input text: Quem era Jim Henson? Jim Henson era um
# predicted text: homem
Generate Full Sequence
# input sequence
text = "Bu yazıyı bilgisayar yazdı."
inputs = tokenizer(text, return_tensors="pt")
# model output using Top-k sampling text generation method
sample_outputs = model.generate(inputs.input_ids,
pad_token_id=50256,
do_sample=True,
max_length=50, # put the token number you want
top_k=40,
num_return_sequences=1)
# generated sequence
for i, sample_output in enumerate(sample_outputs):
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
# >> Generated text
# Quem era Jim Henson? Jim Henson era um executivo de televisão e diretor de um grande estúdio de cinema mudo chamado Selig,
# depois que o diretor de cinema mudo Georges Seuray dirigiu vários filmes para a Columbia e o estúdio.
Limitations and bias
The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral.
Training data
Wikipedia Turkish article dump as of 28-10-2020
Training procedure
Eval results
epoch train_loss valid_loss accuracy perplexity time
0 6.922922 6.653488 0.148002 775.484253 2:26:41
1 4.799396 4.633522 0.277028 102.875755 3:03:38
2 4.610025 4.462641 0.289884 86.716248 2:34:50