|
--- |
|
language: |
|
- en |
|
thumbnail: |
|
tags: |
|
- gpt2 |
|
- conversational |
|
license: apache-2.0 |
|
datasets: |
|
- wikipedia-turkish |
|
metrics: |
|
- perplexity |
|
- accuracy |
|
widget: |
|
- text: Bu yazıyı bir bilgisayar yazdı. Yazarken |
|
context: '' |
|
- text: İnternete kolay erişim sayesinde dünya daha da küçüldü. Bunun sonucunda |
|
context: '' |
|
--- |
|
# GPT2 Persona Chatbot based on Movie Characters |
|
Model used for https://www.metayazar.com/chatbot |
|
GPT2 Small Trained on movie scripts (especially Sci-fi) |
|
This work is based on Persona Chatbot originally done by Hugging Face team (https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313) |
|
For cleaning movie scripts I also provide cleaner code |
|
https://github.com/gorkemgoknar/moviescriptcleaner |
|
|
|
Example persona how to: |
|
https://gist.github.com/gorkemgoknar/ae29bf9d14fa814e6a64d0e57a4a4ed7 |
|
|
|
For obvious reasons I cannot share raw personafile but you can check above gist for example how to create it. |
|
|
|
A working "full" demo can be seen in https://www.metayazar.com/chatbot |
|
For Turkish version (with limited training) https://www.metayazar.com/chatbot_tr |
|
|
|
|
|
```python |
|
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small') |
|
model = AutoModelWithLMHead.from_pretrained('output-small') |
|
# Let's chat for 5 lines |
|
for step in range(100): |
|
# encode the new user input, add the eos_token and return a tensor in Pytorch |
|
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') |
|
# print(new_user_input_ids) |
|
# append the new user input tokens to the chat history |
|
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids |
|
# generated a response while limiting the total chat history to 1000 tokens, |
|
chat_history_ids = model.generate( |
|
bot_input_ids, max_length=500, |
|
pad_token_id=tokenizer.eos_token_id, |
|
no_repeat_ngram_size=3, |
|
do_sample=True, |
|
top_k=100, |
|
top_p=0.7, |
|
temperature = 0.8 |
|
) |
|
|
|
# pretty print last ouput tokens from bot |
|
print("AI: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) |
|
``` |