SegForCoral-2025_05_05_72001-bs16_refine
This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4708
- Learning Rate: 0.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rate |
---|---|---|---|---|
0.8419 | 1.0 | 115 | 0.7590 | 1e-05 |
0.7569 | 2.0 | 230 | 0.6943 | 1e-05 |
0.7101 | 3.0 | 345 | 0.6526 | 1e-05 |
0.6722 | 4.0 | 460 | 0.6274 | 1e-05 |
0.6506 | 5.0 | 575 | 0.6015 | 1e-05 |
0.6282 | 6.0 | 690 | 0.5865 | 1e-05 |
0.6166 | 7.0 | 805 | 0.5672 | 1e-05 |
0.6008 | 8.0 | 920 | 0.5533 | 1e-05 |
0.593 | 9.0 | 1035 | 0.5361 | 1e-05 |
0.5804 | 10.0 | 1150 | 0.5343 | 1e-05 |
0.5749 | 11.0 | 1265 | 0.5341 | 1e-05 |
0.5662 | 12.0 | 1380 | 0.5229 | 1e-05 |
0.559 | 13.0 | 1495 | 0.5178 | 1e-05 |
0.5559 | 14.0 | 1610 | 0.5028 | 1e-05 |
0.5455 | 15.0 | 1725 | 0.5070 | 1e-05 |
0.545 | 16.0 | 1840 | 0.4901 | 1e-05 |
0.5422 | 17.0 | 1955 | 0.4999 | 1e-05 |
0.5378 | 18.0 | 2070 | 0.5047 | 1e-05 |
0.5345 | 19.0 | 2185 | 0.4924 | 1e-05 |
0.531 | 20.0 | 2300 | 0.4915 | 1e-05 |
0.5305 | 21.0 | 2415 | 0.4855 | 1e-05 |
0.5255 | 22.0 | 2530 | 0.4804 | 1e-05 |
0.5247 | 23.0 | 2645 | 0.4915 | 1e-05 |
0.5229 | 24.0 | 2760 | 0.4845 | 1e-05 |
0.5192 | 25.0 | 2875 | 0.4880 | 1e-05 |
0.5219 | 26.0 | 2990 | 0.4804 | 1e-05 |
0.521 | 27.0 | 3105 | 0.4767 | 1e-05 |
0.5165 | 28.0 | 3220 | 0.4729 | 1e-05 |
0.5176 | 29.0 | 3335 | 0.4870 | 1e-05 |
0.5157 | 30.0 | 3450 | 0.4736 | 1e-05 |
0.517 | 31.0 | 3565 | 0.4801 | 1e-05 |
0.5126 | 32.0 | 3680 | 0.4774 | 1e-05 |
0.5171 | 33.0 | 3795 | 0.4762 | 1e-05 |
0.513 | 34.0 | 3910 | 0.4755 | 1e-05 |
0.5121 | 35.0 | 4025 | 0.4698 | 0.0000 |
0.5115 | 36.0 | 4140 | 0.4696 | 0.0000 |
0.5097 | 37.0 | 4255 | 0.4767 | 0.0000 |
0.5128 | 38.0 | 4370 | 0.4686 | 0.0000 |
0.5094 | 39.0 | 4485 | 0.4694 | 0.0000 |
0.511 | 40.0 | 4600 | 0.4698 | 0.0000 |
0.5088 | 41.0 | 4715 | 0.4709 | 0.0000 |
0.509 | 42.0 | 4830 | 0.4720 | 0.0000 |
0.5091 | 43.0 | 4945 | 0.4702 | 0.0000 |
0.5078 | 44.0 | 5060 | 0.4692 | 0.0000 |
0.5076 | 45.0 | 5175 | 0.4720 | 0.0000 |
0.5076 | 46.0 | 5290 | 0.4726 | 0.0000 |
0.5049 | 47.0 | 5405 | 0.4732 | 0.0000 |
0.5104 | 48.0 | 5520 | 0.4708 | 0.0000 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.3.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for groderg/SegForCoral-2025_05_05_72001-bs16_refine
Base model
nvidia/mit-b0