yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6495
  • Map: 0.6577
  • Map 50: 0.8888
  • Map 75: 0.7196
  • Map Small: -1.0
  • Map Medium: 0.4565
  • Map Large: 0.696
  • Mar 1: 0.7167
  • Mar 10: 0.8238
  • Mar 100: 0.8571
  • Mar Small: -1.0
  • Mar Medium: 0.7
  • Mar Large: 0.8833
  • Map Raccoon: 0.0
  • Mar 100 Raccoon: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Raccoon Mar 100 Raccoon
No log 1.0 40 1.7327 0.0125 0.0323 0.0087 -1.0 0.0009 0.0269 0.1643 0.3119 0.5643 -1.0 0.1333 0.6361 0.0 0.0
No log 2.0 80 1.5556 0.0334 0.0889 0.0197 -1.0 0.0013 0.0512 0.1619 0.4143 0.6024 -1.0 0.15 0.6778 0.0 0.0
No log 3.0 120 1.3242 0.0751 0.1717 0.0527 -1.0 0.0321 0.086 0.2381 0.5 0.6619 -1.0 0.1833 0.7417 0.0 0.0
No log 4.0 160 1.3937 0.0627 0.1689 0.0273 -1.0 0.018 0.0749 0.2024 0.4 0.6571 -1.0 0.3667 0.7056 0.0 0.0
No log 5.0 200 1.4487 0.0691 0.186 0.0318 -1.0 0.0136 0.0819 0.1976 0.381 0.6619 -1.0 0.3833 0.7083 0.0 0.0
No log 6.0 240 1.6055 0.072 0.1773 0.0367 -1.0 0.0166 0.0826 0.2738 0.3976 0.6 -1.0 0.1167 0.6806 0.0 0.0
No log 7.0 280 1.2369 0.0891 0.1749 0.0764 -1.0 0.0147 0.1052 0.3286 0.5643 0.6762 -1.0 0.3 0.7389 0.0 0.0
No log 8.0 320 1.1697 0.1039 0.2156 0.0769 -1.0 0.0276 0.1226 0.35 0.5929 0.7071 -1.0 0.35 0.7667 0.0 0.0
No log 9.0 360 1.3522 0.0799 0.1892 0.043 -1.0 0.0075 0.0965 0.3333 0.531 0.6667 -1.0 0.2167 0.7417 0.0 0.0
No log 10.0 400 1.1073 0.1661 0.3327 0.1245 -1.0 0.0721 0.1853 0.4 0.6333 0.7333 -1.0 0.45 0.7806 0.0 0.0
No log 11.0 440 1.2113 0.1826 0.2611 0.1954 -1.0 0.0132 0.2154 0.5452 0.6667 0.7143 -1.0 0.1833 0.8028 0.0 0.0
No log 12.0 480 0.7511 0.181 0.2856 0.1872 -1.0 0.0802 0.2093 0.5429 0.7429 0.8214 -1.0 0.6167 0.8556 0.0 0.0
1.1152 13.0 520 0.7134 0.2717 0.3694 0.3298 -1.0 0.3034 0.2829 0.6524 0.7976 0.8429 -1.0 0.7 0.8667 0.0 0.0
1.1152 14.0 560 0.7378 0.2944 0.4283 0.3525 -1.0 0.3236 0.3003 0.631 0.7857 0.8405 -1.0 0.65 0.8722 0.0 0.0
1.1152 15.0 600 0.6910 0.3206 0.4532 0.3833 -1.0 0.2139 0.3496 0.6595 0.8095 0.8571 -1.0 0.7 0.8833 0.0 0.0
1.1152 16.0 640 0.7127 0.3638 0.5373 0.3835 -1.0 0.207 0.399 0.6214 0.7905 0.8571 -1.0 0.6833 0.8861 0.0 0.0
1.1152 17.0 680 0.7322 0.423 0.6133 0.487 -1.0 0.303 0.4664 0.6667 0.7952 0.85 -1.0 0.6833 0.8778 0.0 0.0
1.1152 18.0 720 0.6799 0.4933 0.6995 0.5327 -1.0 0.4098 0.5267 0.7167 0.8381 0.8667 -1.0 0.7333 0.8889 0.0 0.0
1.1152 19.0 760 0.7052 0.5861 0.806 0.6607 -1.0 0.4365 0.6174 0.6857 0.8286 0.8595 -1.0 0.6667 0.8917 0.0 0.0
1.1152 20.0 800 0.6941 0.5829 0.8159 0.6512 -1.0 0.4048 0.6189 0.6881 0.819 0.8571 -1.0 0.6833 0.8861 0.0 0.0
1.1152 21.0 840 0.7119 0.6005 0.8281 0.6929 -1.0 0.3645 0.6466 0.7024 0.7905 0.8429 -1.0 0.6833 0.8694 0.0 0.0
1.1152 22.0 880 0.6753 0.6023 0.8291 0.6487 -1.0 0.4107 0.6406 0.7214 0.819 0.8619 -1.0 0.7167 0.8861 0.0 0.0
1.1152 23.0 920 0.6418 0.6598 0.8868 0.7259 -1.0 0.4322 0.703 0.7262 0.8167 0.8643 -1.0 0.7 0.8917 0.0 0.0
1.1152 24.0 960 0.6646 0.6521 0.8725 0.7208 -1.0 0.4154 0.6961 0.7095 0.8262 0.869 -1.0 0.7 0.8972 0.0 0.0
0.661 25.0 1000 0.6629 0.6552 0.8923 0.7389 -1.0 0.4398 0.6956 0.7262 0.8167 0.8548 -1.0 0.6667 0.8861 0.0 0.0
0.661 26.0 1040 0.6507 0.6501 0.8893 0.7147 -1.0 0.4404 0.6893 0.7167 0.8119 0.8524 -1.0 0.6833 0.8806 0.0 0.0
0.661 27.0 1080 0.6527 0.6502 0.8883 0.7192 -1.0 0.4258 0.6913 0.7167 0.831 0.8548 -1.0 0.6833 0.8833 0.0 0.0
0.661 28.0 1120 0.6488 0.6592 0.8861 0.7451 -1.0 0.447 0.697 0.719 0.8262 0.8571 -1.0 0.7 0.8833 0.0 0.0
0.661 29.0 1160 0.6496 0.6578 0.8885 0.7198 -1.0 0.4565 0.6961 0.7167 0.8238 0.8571 -1.0 0.7 0.8833 0.0 0.0
0.661 30.0 1200 0.6495 0.6577 0.8888 0.7196 -1.0 0.4565 0.696 0.7167 0.8238 0.8571 -1.0 0.7 0.8833 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
0
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for gubringa/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(31)
this model