|
--- |
|
license: mit |
|
tags: |
|
- pytorch |
|
--- |
|
|
|
# π₯ FAR: Frame Autoregressive Model for Both Short- and Long-Context Video Modeling π |
|
|
|
<div align="center"> |
|
|
|
[](https://farlongctx.github.io/) |
|
[](https://arxiv.org/abs/2503.19325) |
|
[](https://huggingface.co/guyuchao/FAR_Models) |
|
[](https://paperswithcode.com/sota/video-generation-on-ucf-101) |
|
|
|
</div> |
|
|
|
<p align="center" style="font-size: larger;"> |
|
<a href="https://arxiv.org/abs/2503.19325">Long-Context Autoregressive Video Modeling with Next-Frame Prediction</a> |
|
</p> |
|
|
|
 |
|
|
|
## π’ News |
|
|
|
* **2025-03:** Paper and Code of [FAR](https://farlongctx.github.io/) are released! π |
|
|
|
|
|
## π What's the Potential of FAR? |
|
|
|
### π₯ Introducing FAR: a new baseline for autoregressive video generation |
|
|
|
FAR (i.e., <u>**F**</u>rame <u>**A**</u>uto<u>**R**</u>egressive Model) learns to predict continuous frames based on an autoregressive context. Its objective aligns well with video modeling, similar to the next-token prediction in language modeling. |
|
|
|
 |
|
|
|
### π₯ FAR achieves better convergence than video diffusion models with the same continuous latent space |
|
|
|
<p align="center"> |
|
<img src="https://github.com/showlab/FAR/blob/main/assets/converenge.jpg?raw=true" width=55%> |
|
<p> |
|
|
|
### π₯ FAR leverages clean visual context without additional image-to-video fine-tuning: |
|
|
|
Unconditional pretraining on UCF-101 achieves state-of-the-art results in both video generation (context frame = 0) and video prediction (context frame β₯ 1) within a single model. |
|
|
|
<p align="center"> |
|
<img src="https://github.com/showlab/FAR/blob/main/assets/performance.png?raw=true" width=75%> |
|
<p> |
|
|
|
### π₯ FAR supports 16x longer temporal extrapolation at test time |
|
|
|
<p align="center"> |
|
<img src="https://github.com/showlab/FAR/blob/main/assets/extrapolation.png?raw=true" width=100%> |
|
<p> |
|
|
|
### π₯ FAR supports efficient training on long-video sequence with managable token lengths |
|
|
|
<p align="center"> |
|
<img src="https://github.com/showlab/FAR/blob/main/assets/long_short_term_ctx.jpg?raw=true" width=55%> |
|
<p> |
|
|
|
#### π For more details, check out our [paper](https://arxiv.org/abs/2503.19325). |
|
|
|
|
|
## ποΈββοΈ FAR Model Zoo |
|
We provide trained FAR models in our paper for re-implementation. |
|
|
|
### Video Generation |
|
|
|
We use seed-[0,2,4,6] in evaluation, following the evaluation prototype of [Latte](https://arxiv.org/abs/2401.03048): |
|
|
|
| Model (Config) | #Params | Resolution | Condition | FVD | HF Weights | Pre-Computed Samples | |
|
|:-------:|:------------:|:------------:|:-----------:|:-----:|:----------:|:----------:| |
|
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_uncond_res128_400K_bs32.yml) | 457 M | 128x128 | β | 280 Β± 11.7 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Uncond128-c19abd2c.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_cond_res128_400K_bs32.yml) | 457 M | 128x128 | β | 99 Β± 5.9 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Cond128-c6f798bf.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_uncond_res256_400K_bs32.yml) | 457 M | 256x256 | β | 303 Β± 13.5 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Uncond256-adea51e9.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_cond_res256_400K_bs32.yml) | 457 M | 256x256 | β | 113 Β± 3.6 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Cond256-41c6033f.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
| [FAR-XL](options/train/far/video_generation/FAR_XL_ucf101_uncond_res256_400K_bs32.yml) | 657 M | 256x256 | β | 279 Β± 9.2 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_XL_UCF101_Uncond256-3594ce6b.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
| [FAR-XL](options/train/far/video_generation/FAR_XL_ucf101_cond_res256_400K_bs32.yml) | 657 M | 256x256 | β | 108 Β± 4.2 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_XL_UCF101_Cond256-28a88f56.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
|
|
### Short-Video Prediction |
|
|
|
We follows the evaluation prototype of [MCVD](https://arxiv.org/abs/2205.09853) and [ExtDM](https://openaccess.thecvf.com/content/CVPR2024/papers/Zhang_ExtDM_Distribution_Extrapolation_Diffusion_Model_for_Video_Prediction_CVPR_2024_paper.pdf): |
|
|
|
| Model (Config) | #Params | Dataset | PSNR | SSIM | LPIPS | FVD | HF Weights | Pre-Computed Samples | |
|
|:-----:|:------------:|:------------:|:-----:|:-----:|:-----:|:-----:|:----------:|:----------:| |
|
| [FAR-B](options/train/far/short_video_prediction/FAR_B_ucf101_res64_200K_bs32.yml) | 130 M | UCF101 | 25.64 | 0.818 | 0.037 | 194.1 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/short_video_prediction/FAR_B_UCF101_Uncond64-381d295f.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
| [FAR-B](options/train/far/short_video_prediction/FAR_B_bair_res64_200K_bs32.yml) | 130 M | BAIR (c=2, p=28) | 19.40 | 0.819 | 0.049 | 144.3 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/short_video_prediction/FAR_B_BAIR_Uncond64-1983191b.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
|
|
### Long-Video Prediction |
|
|
|
We use seed-[0,2,4,6] in evaluation, following the evaluation prototype of [TECO](https://arxiv.org/abs/2210.02396): |
|
|
|
|
|
| Model (Config) | #Params | Dataset | PSNR | SSIM | LPIPS | FVD | HF Weights | Pre-Computed Samples | |
|
|:-----:|:------------:|:------------:|:-----:|:-----:|:-----:|:-----:|:----------:|:----------:| |
|
| [FAR-B-Long](options/train/far/long_video_prediction/FAR_B_Long_dmlab_res64_400K_bs32.yml) | 150 M | DMLab | 22.3 | 0.687 | 0.104 | 64 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/long_video_prediction/FAR_B_Long_DMLab_Action64-c09441dc.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
| [FAR-M-Long](options/train/far/long_video_prediction/FAR_M_Long_minecraft_res128_400K_bs32.yml) | 280 M | Minecraft | 16.9 | 0.448 | 0.251 | 39 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/long_video_prediction/FAR_M_Long_Minecraft_Action128-4c041561.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) | |
|
|
|
## π§ Dependencies and Installation |
|
|
|
### 1. Setup Environment: |
|
|
|
```bash |
|
# Setup Conda Environment |
|
conda create -n FAR python=3.10 |
|
conda activate FAR |
|
|
|
# Install Pytorch |
|
conda install pytorch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 pytorch-cuda=12.4 -c pytorch -c nvidia |
|
|
|
# Install Other Dependences |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### 2. Prepare Dataset: |
|
|
|
We have uploaded the dataset used in this paper to Hugging Face datasets for faster download. Please follow the instructions below to prepare. |
|
|
|
```python |
|
from huggingface_hub import snapshot_download, hf_hub_download |
|
|
|
dataset_url = { |
|
"ucf101": "guyuchao/UCF101", |
|
"bair": "guyuchao/BAIR", |
|
"minecraft": "guyuchao/Minecraft", |
|
"minecraft_latent": "guyuchao/Minecraft_Latent", |
|
"dmlab": "guyuchao/DMLab", |
|
"dmlab_latent": "guyuchao/DMLab_Latent" |
|
} |
|
|
|
for key, url in dataset_url.items(): |
|
snapshot_download( |
|
repo_id=url, |
|
repo_type="dataset", |
|
local_dir=f"datasets/{key}", |
|
token="input your hf token here" |
|
) |
|
``` |
|
|
|
Then, enter its directory and execute: |
|
|
|
```bash |
|
find . -name "shard-*.tar" -exec tar -xvf {} \; |
|
``` |
|
|
|
|
|
### 3. Prepare Pretrained Models of FAR: |
|
|
|
We have uploaded the pretrained models of FAR to Hugging Face models. Please follow the instructions below to download if you want to evaluate FAR. |
|
|
|
```bash |
|
from huggingface_hub import snapshot_download, hf_hub_download |
|
|
|
for key, url in dataset_url.items(): |
|
snapshot_download( |
|
repo_id="guyuchao/FAR_Models", |
|
repo_type="model", |
|
local_dir="experiments/pretrained_models/FAR_Models", |
|
token="input your hf token here" |
|
) |
|
``` |
|
|
|
## π Training |
|
|
|
To train different models, you can run the following command: |
|
|
|
```bash |
|
accelerate launch \ |
|
--num_processes 8 \ |
|
--num_machines 1 \ |
|
--main_process_port 19040 \ |
|
train.py \ |
|
-opt train_config.yml |
|
``` |
|
|
|
* **Wandb:** Set ```use_wandb``` to ```True``` in config to enable wandb monitor. |
|
* **Periodally Evaluation:** Set ```val_freq``` to control the peroidly evaluation in training. |
|
* **Auto Resume:** Directly rerun the script, the model will find the lastest checkpoint to resume, the wandb log will automatically resume. |
|
* **Efficient Training on Pre-Extracted Latent:** Set ```use_latent``` to ```True```, and set the ```data_list``` to correponding latent path list. |
|
|
|
## π» Sampling & Evaluation |
|
|
|
To evaluate the performance of a pretrained model, just copy the training config and set the ```pretrain_network: ~``` to your trained folder. Then run the following scripts: |
|
|
|
|
|
```bash |
|
accelerate launch \ |
|
--num_processes 8 \ |
|
--num_machines 1 \ |
|
--main_process_port 10410 \ |
|
test.py \ |
|
-opt test_config.yml |
|
``` |
|
|
|
## π License |
|
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. |
|
|
|
|
|
## π Citation |
|
If our work assists your research, feel free to give us a star β or cite us using: |
|
``` |
|
@article{gu2025long, |
|
title={Long-Context Autoregressive Video Modeling with Next-Frame Prediction}, |
|
author={Gu, Yuchao and Mao, weijia and Shou, Mike Zheng}, |
|
journal={arXiv preprint arXiv:2503.19325}, |
|
year={2025} |
|
} |
|
``` |