FAR_Models / README.md
guyuchao's picture
Remove library name (#2)
a8ac0dd verified
---
license: mit
tags:
- pytorch
---
# πŸŽ₯ FAR: Frame Autoregressive Model for Both Short- and Long-Context Video Modeling πŸš€
<div align="center">
[![Project Page](https://img.shields.io/badge/Project-Website-orange)](https://farlongctx.github.io/)
[![arXiv](https://img.shields.io/badge/arXiv-2503.19325-b31b1b.svg)](https://arxiv.org/abs/2503.19325)
[![huggingface weights](https://img.shields.io/badge/%F0%9F%A4%97%20Weights-FAR-yellow)](https://huggingface.co/guyuchao/FAR_Models)
[![SOTA](https://img.shields.io/badge/State%20of%20the%20Art-Video%20Generation%20-32B1B4)](https://paperswithcode.com/sota/video-generation-on-ucf-101)
</div>
<p align="center" style="font-size: larger;">
<a href="https://arxiv.org/abs/2503.19325">Long-Context Autoregressive Video Modeling with Next-Frame Prediction</a>
</p>
![dmlab_sample](https://github.com/showlab/FAR/blob/main/assets/dmlab_sample.png?raw=true)
## πŸ“’ News
* **2025-03:** Paper and Code of [FAR](https://farlongctx.github.io/) are released! πŸŽ‰
## 🌟 What's the Potential of FAR?
### πŸ”₯ Introducing FAR: a new baseline for autoregressive video generation
FAR (i.e., <u>**F**</u>rame <u>**A**</u>uto<u>**R**</u>egressive Model) learns to predict continuous frames based on an autoregressive context. Its objective aligns well with video modeling, similar to the next-token prediction in language modeling.
![dmlab_sample](https://github.com/showlab/FAR/blob/main/assets/pipeline.png?raw=true)
### πŸ”₯ FAR achieves better convergence than video diffusion models with the same continuous latent space
<p align="center">
<img src="https://github.com/showlab/FAR/blob/main/assets/converenge.jpg?raw=true" width=55%>
<p>
### πŸ”₯ FAR leverages clean visual context without additional image-to-video fine-tuning:
Unconditional pretraining on UCF-101 achieves state-of-the-art results in both video generation (context frame = 0) and video prediction (context frame β‰₯ 1) within a single model.
<p align="center">
<img src="https://github.com/showlab/FAR/blob/main/assets/performance.png?raw=true" width=75%>
<p>
### πŸ”₯ FAR supports 16x longer temporal extrapolation at test time
<p align="center">
<img src="https://github.com/showlab/FAR/blob/main/assets/extrapolation.png?raw=true" width=100%>
<p>
### πŸ”₯ FAR supports efficient training on long-video sequence with managable token lengths
<p align="center">
<img src="https://github.com/showlab/FAR/blob/main/assets/long_short_term_ctx.jpg?raw=true" width=55%>
<p>
#### πŸ“š For more details, check out our [paper](https://arxiv.org/abs/2503.19325).
## πŸ‹οΈβ€β™‚οΈ FAR Model Zoo
We provide trained FAR models in our paper for re-implementation.
### Video Generation
We use seed-[0,2,4,6] in evaluation, following the evaluation prototype of [Latte](https://arxiv.org/abs/2401.03048):
| Model (Config) | #Params | Resolution | Condition | FVD | HF Weights | Pre-Computed Samples |
|:-------:|:------------:|:------------:|:-----------:|:-----:|:----------:|:----------:|
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_uncond_res128_400K_bs32.yml) | 457 M | 128x128 | βœ— | 280 Β± 11.7 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Uncond128-c19abd2c.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_cond_res128_400K_bs32.yml) | 457 M | 128x128 | βœ“ | 99 Β± 5.9 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Cond128-c6f798bf.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_uncond_res256_400K_bs32.yml) | 457 M | 256x256 | βœ— | 303 Β± 13.5 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Uncond256-adea51e9.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
| [FAR-L](options/train/far/video_generation/FAR_L_ucf101_cond_res256_400K_bs32.yml) | 457 M | 256x256 | βœ“ | 113 Β± 3.6 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_L_UCF101_Cond256-41c6033f.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
| [FAR-XL](options/train/far/video_generation/FAR_XL_ucf101_uncond_res256_400K_bs32.yml) | 657 M | 256x256 | βœ— | 279 Β± 9.2 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_XL_UCF101_Uncond256-3594ce6b.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
| [FAR-XL](options/train/far/video_generation/FAR_XL_ucf101_cond_res256_400K_bs32.yml) | 657 M | 256x256 | βœ“ | 108 Β± 4.2 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/video_generation/FAR_XL_UCF101_Cond256-28a88f56.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
### Short-Video Prediction
We follows the evaluation prototype of [MCVD](https://arxiv.org/abs/2205.09853) and [ExtDM](https://openaccess.thecvf.com/content/CVPR2024/papers/Zhang_ExtDM_Distribution_Extrapolation_Diffusion_Model_for_Video_Prediction_CVPR_2024_paper.pdf):
| Model (Config) | #Params | Dataset | PSNR | SSIM | LPIPS | FVD | HF Weights | Pre-Computed Samples |
|:-----:|:------------:|:------------:|:-----:|:-----:|:-----:|:-----:|:----------:|:----------:|
| [FAR-B](options/train/far/short_video_prediction/FAR_B_ucf101_res64_200K_bs32.yml) | 130 M | UCF101 | 25.64 | 0.818 | 0.037 | 194.1 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/short_video_prediction/FAR_B_UCF101_Uncond64-381d295f.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
| [FAR-B](options/train/far/short_video_prediction/FAR_B_bair_res64_200K_bs32.yml) | 130 M | BAIR (c=2, p=28) | 19.40 | 0.819 | 0.049 | 144.3 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/short_video_prediction/FAR_B_BAIR_Uncond64-1983191b.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
### Long-Video Prediction
We use seed-[0,2,4,6] in evaluation, following the evaluation prototype of [TECO](https://arxiv.org/abs/2210.02396):
| Model (Config) | #Params | Dataset | PSNR | SSIM | LPIPS | FVD | HF Weights | Pre-Computed Samples |
|:-----:|:------------:|:------------:|:-----:|:-----:|:-----:|:-----:|:----------:|:----------:|
| [FAR-B-Long](options/train/far/long_video_prediction/FAR_B_Long_dmlab_res64_400K_bs32.yml) | 150 M | DMLab | 22.3 | 0.687 | 0.104 | 64 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/long_video_prediction/FAR_B_Long_DMLab_Action64-c09441dc.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
| [FAR-M-Long](options/train/far/long_video_prediction/FAR_M_Long_minecraft_res128_400K_bs32.yml) | 280 M | Minecraft | 16.9 | 0.448 | 0.251 | 39 | [Model-HF](https://huggingface.co/guyuchao/FAR_Models/resolve/main/long_video_prediction/FAR_M_Long_Minecraft_Action128-4c041561.pth) | [Google Drive](https://drive.google.com/drive/folders/1p1MvCiTfoUYAUYNqQNG6nEU02zy8U1vp?usp=drive_link) |
## πŸ”§ Dependencies and Installation
### 1. Setup Environment:
```bash
# Setup Conda Environment
conda create -n FAR python=3.10
conda activate FAR
# Install Pytorch
conda install pytorch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 pytorch-cuda=12.4 -c pytorch -c nvidia
# Install Other Dependences
pip install -r requirements.txt
```
### 2. Prepare Dataset:
We have uploaded the dataset used in this paper to Hugging Face datasets for faster download. Please follow the instructions below to prepare.
```python
from huggingface_hub import snapshot_download, hf_hub_download
dataset_url = {
"ucf101": "guyuchao/UCF101",
"bair": "guyuchao/BAIR",
"minecraft": "guyuchao/Minecraft",
"minecraft_latent": "guyuchao/Minecraft_Latent",
"dmlab": "guyuchao/DMLab",
"dmlab_latent": "guyuchao/DMLab_Latent"
}
for key, url in dataset_url.items():
snapshot_download(
repo_id=url,
repo_type="dataset",
local_dir=f"datasets/{key}",
token="input your hf token here"
)
```
Then, enter its directory and execute:
```bash
find . -name "shard-*.tar" -exec tar -xvf {} \;
```
### 3. Prepare Pretrained Models of FAR:
We have uploaded the pretrained models of FAR to Hugging Face models. Please follow the instructions below to download if you want to evaluate FAR.
```bash
from huggingface_hub import snapshot_download, hf_hub_download
for key, url in dataset_url.items():
snapshot_download(
repo_id="guyuchao/FAR_Models",
repo_type="model",
local_dir="experiments/pretrained_models/FAR_Models",
token="input your hf token here"
)
```
## πŸš€ Training
To train different models, you can run the following command:
```bash
accelerate launch \
--num_processes 8 \
--num_machines 1 \
--main_process_port 19040 \
train.py \
-opt train_config.yml
```
* **Wandb:** Set ```use_wandb``` to ```True``` in config to enable wandb monitor.
* **Periodally Evaluation:** Set ```val_freq``` to control the peroidly evaluation in training.
* **Auto Resume:** Directly rerun the script, the model will find the lastest checkpoint to resume, the wandb log will automatically resume.
* **Efficient Training on Pre-Extracted Latent:** Set ```use_latent``` to ```True```, and set the ```data_list``` to correponding latent path list.
## πŸ’» Sampling & Evaluation
To evaluate the performance of a pretrained model, just copy the training config and set the ```pretrain_network: ~``` to your trained folder. Then run the following scripts:
```bash
accelerate launch \
--num_processes 8 \
--num_machines 1 \
--main_process_port 10410 \
test.py \
-opt test_config.yml
```
## πŸ“œ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## πŸ“– Citation
If our work assists your research, feel free to give us a star ⭐ or cite us using:
```
@article{gu2025long,
title={Long-Context Autoregressive Video Modeling with Next-Frame Prediction},
author={Gu, Yuchao and Mao, weijia and Shou, Mike Zheng},
journal={arXiv preprint arXiv:2503.19325},
year={2025}
}
```